Advertisement

Two-step modulus-based matrix splitting iteration methods for implicit complementarity problems

  • Yang CaoEmail author
  • An Wang
Original Paper
  • 17 Downloads

Abstract

In this paper, a class of two-step modulus-based matrix splitting (TMMS) iteration methods are proposed to solve the implicit complementarity problems. It is proved that the TMMS iteration methods are convergent under certain conditions when the system matrix is either a positive definite matrix or an H+-matrix. Two numerical examples are given to illustrate the effectiveness of the new proposed iteration methods. Numerical results show that the new proposed TMMS iteration methods have better performance than the existing modulus-based relaxation iteration methods for solving the implicit complementarity problems.

Keywords

Implicit complementarity problem Modulus method Matrix splitting Convergence 

Mathematics Subject Classification (2010)

65F10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 11771225) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX17_1905).

References

  1. 1.
    Isac, G.: The implicit complementarity problem. In: Complementarity Problems. Lecture Notes in Mathematics. Springer, Berlin, Heidelberg (1992)Google Scholar
  2. 2.
    Billups, S.C., Murty, K.G.: Complementarity problems. J. Comput. Appl. Math. 124, 303–318 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hong, J.-T., Li, C.-L.: Modulus-based matrix splitting iteration methods for a class of implicit complementarity problems. Numer. Linear Algebra Appl. 23, 629–641 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. SIAM, Philadelphia (2009)CrossRefzbMATHGoogle Scholar
  5. 5.
    Ferris, M.C., Pang, J.-S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669–713 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Pang, J.-S.: On the convergence of a basic iterative method for the implicit complementarity problem. J. Optim. Theory Appl. 37, 149–162 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Noor, M.A.: Fixed point approach for complementarity problems. J. Math. Anal. Appl. 133, 437–448 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bai, Z.-Z.: On the monotone convergence of the projected iteration methods for linear complementarity problems. Numer. Math. J. Chinese Univ. 5, 228–233 (1996)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Zhan, W.-P., Zhou, S.-Z., Zen, J.-P.: Iterative methods for a kind of quasi-complementarity problems. Acta Math. Appl. Sinica 23, 551–556 (2000)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Yuan, Q., Yin, H.-Y.: Stationary points of the minimization reformulations of implicit complementarity problems. Numer. Math. J. Chinese Univ. 31, 11–18 (2009)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Wang, A., Cao, Y., Shi, Q.: Convergence analysis of modulus-based matrix splitting iterative methods for implicit complementarity problems. J. Inequal. Appl. 2, 11 (2018)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Schäfer, U.: On the modulus algorithm for the linear complementarity problem. Oper. Res. Lett. 32, 350–354 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dong, J.-L., Jiang, M.-Q.: A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl. 16, 129–143 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17, 917–933 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Zhang, L.-L., Ren, Z.-R.: Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems. Appl. Math. Lett. 26, 638–642 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Zheng, N., Yin, J.-F.: Accelerated modulus-based matrix splitting iteration methods for linear complementarity problem. Numer. Algorithms 64, 245–262 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zheng, N., Yin, J.-F.: Convergence of accelerated modulus-based matrix splitting iteration methods for linear complementarity problem with an h + −matrix. J. Comput. Appl. Math. 260, 281–293 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 20, 425–439 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zhang, L.-L., Zhang, Y.-P., Ren, Z.-R.: New convergence proofs of modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Linear Algebra Appl. 481, 83–93 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Bai, Z.-Z., Zhang, L.-L.: Modulus-based multigrid methods for linear complementarity problems. Numer. Linear Algebra Appl. 24, 1–15 (2017)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems. Numer. Algorithms 62, 59–77 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zhang, L.-L.: Two-stage multisplitting iteration methods using modulus-based matrix splitting as inner iteration for linear complementarity problems. J. Optim. Theory Appl. 160, 189–203 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hadjidimos, A., Tzoumas, M.: Nonstationary extrapolated modulus algorithms for the solution of the linear complementarity problem. Linear Algebra Appl. 431, 197–210 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wu, S.-L., Li, C.-X.: Two-sweep modulus-based matrix splitting iteration methods for linear complementarity problems. J. Comput. Appl. Math. 302, 327–339 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zhang, L.-L.: Two-step modulus-based matrix splitting iteration method for linear complementarity problems. Numer. Algorithms 57, 83–99 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ke, Y.-F., Ma, C.-F.: On the convergence analysis of two-step modulus-based matrix splitting iteration method for linear complementarity problems. Appl. Math. Comput. 243, 413–418 (2014)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Xia, Z. -C., Li, C. -L.: Modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problem. Appl. Math. Comput. 271, 34–42 (2015)MathSciNetGoogle Scholar
  28. 28.
    Li, R., Yin, J.-F.: On the convergence of modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problems with H + −matrices. J. Comput. Appl. Math. 342, 202–209 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Xie, S.-L., Xu, H.-R., Zeng, J.-P.: Two-step modulus-based matrix splitting iteration method for a class of nonlinear complementarity problems. Linear Algebra Appl. 494, 1–10 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Li, R., Yin, J.-F.: Accelerated modulus-based matrix splitting iteration methods for a restricted class of nonlinear complementarity problems. Numer. Algorithms 75, 339–358 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Huang, N., Ma, C.-F.: The modulus-based matrix splitting algorithms for a class of weakly nonlinear complementarity problems. Numer. Linear Algebra Appl. 23, 558–569 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Wu, S.-L., Guo, P.: Modulus-based matrix splitting algorithms for the quasi-complementarity problems. Appl. Numer. Math. 132, 127–137 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Bai, Z.-Z.: Parallel multisplitting two-stage iterative methods for large sparse systems of weakly nonlinear equations. Numer. Algorithms 15, 347–372 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Bai, Z.-Z., Wang, D.-R.: The monotone convergence of the two-stage iterative method for solving large sparse systems of linear equations. Appl. Math. Lett. 10, 113–117 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Bai, Z.-Z.: On the convergence of additive and multiplicative splitting iterations for systems of linear equations. J. Comput. Appl. Math. 154, 195–214 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Bai, Z.-Z.: On SSOR-like preconditioners for non-Hermitian positive definite matrices. Numer. Linear Algebra Appl. 23, 37–60 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Pan, J.-Y., Bai, Z.-Z., Ng, M.K.: Two-step waveform relaxation methods for implicit linear initial value problems. Numer. Linear Algebra Appl. 12, 293–304 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Bai, Z.-Z., Rozloz̆ník, M.: On the numerical behavior of matrix splitting iteration methods for solving linear systems. SIAM J. Numer. Anal. 53, 1716–1737 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Bai, Z.-Z.: On the convergence of the multisplitting methods for the linear complementarity problem. SIAM J. Matrix Anal. Appl. 21, 67–78 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24, 603–626 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Frommer, A., Szyld, D.B.: H-splittings and two-stage iterative methods. Numerische Mathematik 63, 345–356 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Frommer, A., Mayer, G.: Convergence of relaxed parallel multisplitting methods. Linear Algebra Appl. 119, 141–152 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Varga, R.S.: Matrix Iterative Analysis (Second Edition). Springer, Berlin, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of TransportationNantong UniversityNantongPeople’s Republic of China
  2. 2.School of ScienceNantong UniversityNantongPeople’s Republic of China

Personalised recommendations