# Simple digital quantum algorithm for symmetric first-order linear hyperbolic systems

- 47 Downloads

## Abstract

This paper is devoted to the derivation of a digital quantum algorithm for the Cauchy problem for symmetric first-order linear hyperbolic systems, thanks to the reservoir technique. The reservoir technique is a method designed to avoid artificial diffusion generated by first-order finite volume methods approximating hyperbolic systems of conservation laws. For some class of hyperbolic systems, namely, those with constant matrices in several dimensions, we show that the combination of (i) the reservoir method and (ii) the alternate direction iteration operator splitting approximation allows for the derivation of algorithms only based on simple unitary transformations, thus being perfectly suitable for an implementation on a quantum computer. The same approach can also be adapted to scalar one-dimensional systems with non-constant velocity by combining with a non-uniform mesh. The asymptotic computational complexity for the time evolution is determined and it is demonstrated that the quantum algorithm is more efficient than the classical version. However, in the quantum case, the solution is encoded in probability amplitudes of the quantum register. As a consequence, as with other similar quantum algorithms, a post-processing mechanism has to be used to obtain general properties of the solution because a direct reading cannot be performed as efficiently as the time evolution.

## Keywords

First-order hyperbolic systems Quantum algorithms Quantum information theory Reservoir method## Preview

Unable to display preview. Download preview PDF.

## References

- 1.Abrams, D.S., Lloyd, S.: Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Phys. Rev. Lett.
**83**, 5162–5165 (1999)Google Scholar - 2.Aharonov, D., Ta-Shma, A.: Adiabatic quantum state generation and statistical zero knowledge. In: Proceedings of the thirty-fifth annual ACM symposium on theory of computing, pp. 20–29, ACM (2003)Google Scholar
- 3.Alouges, F., De Vuyst, F., Le Coq, G., Lorin, E.: A process of reduction of the numerical diffusion of usual order one flux difference schemes for nonlinear hyperbolic systems [un procédé de réduction de la diffusion numérique des schémas à différence de flux d’ordre un pour les systèmes hyperboliques non linéaires]. C.R. Math.
**335**(7), 627–632 (2002)MathSciNetzbMATHGoogle Scholar - 4.Alouges, F., De Vuyst, F., Le Coq, G., Lorin, E.: The reservoir scheme for systems of conservation laws. In: Finite volumes for complex applications, III (Porquerolles, 2002), pp. 247–254. Hermes Sci. Publ., Paris (2002)Google Scholar
- 5.Alouges, F., De Vuyst, F., Le Coq, G., Lorin, E.: The reservoir technique: a way to make Godunov-type schemes zero or very low diffuse. application to Colella-Glaz solver. Eur. J. Mech. B. Fluids
**27**(6), 643–664 (2008)MathSciNetzbMATHGoogle Scholar - 6.Alouges, F., Le Coq, G., Lorin, E.: Two-dimensional extension of the reservoir technique for some linear advection systems. J. of Sc. Comput.
**31**(3), 419–458 (2007)MathSciNetzbMATHGoogle Scholar - 7.Arrighi, P., Nesme, V., Forets, M.: The Dirac equation as a quantum walk: higher dimensions, observational convergence. J. Phys. A Math. Theor.
**47**(46), 465302 (2014)MathSciNetzbMATHGoogle Scholar - 8.Aspuru-Guzik, A., Dutoi, A.D., Love, P.J., Head-Gordon, M.: Simulated quantum computation of molecular energies. Science
**309**(5741), 1704–1707 (2005)Google Scholar - 9.Barenco, A. , Bennett, C.H., Cleve, R., Divincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A
**52**(5), 3457–3467 (1995)Google Scholar - 10.Barends, R., Lamata, L., Kelly, J., García-Álvarez, L., Fowler, A.G., Megrant, A., Jeffrey, E., White, T.C., Sank, D., Mutus, J.Y., et al.: Digital quantum simulation of fermionic models with a superconducting circuit. Nat. Commun.
**6**(7654) (2015)Google Scholar - 11.Barends, R., Shabani, A., Lamata, L., Kelly, J., Mezzacapo, A., Las Heras, U., Babbush, R., Fowler, A.G., Campbell, B., Chen, Y., et al.: Digitized adiabatic quantum computing with a superconducting circuit. Nature
**534**(7606), 222–226 (2016)Google Scholar - 12.Benenti, G., Strini, G.: Quantum simulation of the single-particle Schroedinger equation. Am. J. Phys.
**76**(7), 657–662 (2008)Google Scholar - 13.Bergholm, V., Vartiainen, J.J., Moettoenen, M., Salomaa, M.M.: Quantum circuits with uniformly controlled one-qubit gates. Phys. Rev. A
**71**, 052330 (2005)Google Scholar - 14.Berry, D.W.: High-order quantum algorithm for solving linear differential equations. J. Phys. A Math. Theor.
**47**(10), 105301 (2014)MathSciNetzbMATHGoogle Scholar - 15.Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse Hamiltonians. Commun. Math. Phys.
**270**(2), 359–371 (2007)MathSciNetzbMATHGoogle Scholar - 16.Blass, A., Gurevich, Y.: Ancilla-approximable quantum state transformations. J. Math. Phys.
**56**(4), 042201 (2015)MathSciNetzbMATHGoogle Scholar - 17.Boghosian, B.M., Taylor, W.: Simulating quantum mechanics on a quantum computer. Physica D: Nonlinear Phenomena
**120**(1), 30–42 (1998)MathSciNetzbMATHGoogle Scholar - 18.Brown, K.L., Munro, W.J., Kendon, V.M.: Using quantum computers for quantum simulation. Entropy
**12**(11), 2268 (2010)MathSciNetzbMATHGoogle Scholar - 19.Cao, Y., Papageorgiou, A., Petras, I., Traub, J., Kais, S.: Quantum algorithm and circuit design solving the Poisson equation. New J. Phys.
**15**(1), 013021 (2013)MathSciNetGoogle Scholar - 20.Cramer, M., Plenio, M.B., Flammia, S.T., Somma, R., Gross, D., Bartlett, S.D., Landon-Cardinal, O., Poulin, D., Liu, Y.-K.: Efficient quantum state tomography. Nat. Commun.
**1**, 149 (2010)Google Scholar - 21.D’Ariano, G.M., Paris, M.G.A., Sacchi, M.F.: Quantum tomography. Advances in Imaging and Electron Physics
**128**, 206–309 (2003)Google Scholar - 22.Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
**400**(1818), 97–117 (1985)MathSciNetzbMATHGoogle Scholar - 23.Douglas, B.L., Wang, J.B.: Efficient quantum circuit implementation of quantum walks. Phys. Rev. A
**79**, 052335 (2009)Google Scholar - 24.Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys.
**21**(6), 467–488 (1982)MathSciNetGoogle Scholar - 25.Fillion-Gourdeau, F., Lorin, E., Bandrauk, A.D.: Numerical solution of the time-dependent Dirac equation in coordinate space without fermion-doubling. Comput. Phys. Comm.
**183**(7), 1403–1415 (2012)MathSciNetzbMATHGoogle Scholar - 26.Fillion-Gourdeau, F., Lorin, E., Bandrauk, A.D.: Resonantly enhanced pair production in a simple diatomic model. Phys. Rev. Lett.
**110**(1), 013002 (2013)Google Scholar - 27.Fillion-Gourdeau, F., MacLean, S., Laflamme, R.: Algorithm for the solution of the dirac equation on digital quantum computers. Phys. Rev. A
**95**, 042343 (2017)Google Scholar - 28.Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys.
**86**, 153–185 (2014)Google Scholar - 29.Godlewski, E., Raviart, P.-A.: Hyperbolic Systems of Conservation Laws, vol. 3/4 of mathématiques & Applications (Paris) [Mathematics and Applications]. Ellipses, Paris (1991)zbMATHGoogle Scholar
- 30.Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws, vol. 118 of Applied Mathematical Sciences. Springer, New York (1996)zbMATHGoogle Scholar
- 31.Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: An introduction to quantum programming in quipper. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7948 LNCS: 110–124 (2013)Google Scholar
- 32.Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: A scalable quantum programming language. In: Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pp. 333–342 (2013)Google Scholar
- 33.Grover, L., Rudolph, T.: Creating superpositions that correspond to efficiently integrable probability distributions. arXiv:quant-ph/0208112 (2002)
- 34.Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett.
**103**(15), 150502,4 (2009)MathSciNetGoogle Scholar - 35.Jordan, S.P., Lee, K.S.M., Preskill, John: Quantum algorithms for quantum field theories. Science
**336**(6085), 1130–1133 (2012)Google Scholar - 36.Kassal, I., Jordan, S.P., Love, P.J., Mohseni, M., Aspuru-Guzik, A.: Polynomial-time quantum algorithm for the simulation of chemical dynamics. Proc. Natl. Acad. Sci.
**105**(48), 18681–18686 (2008)Google Scholar - 37.Kassal, I., Whitfield, J.D., Perdomo-Ortiz, A., Yung, M.-H., Aspuru-Guzik, A.: Simulating chemistry using quantum computers. Annu. Rev. Phys. Chem.
**62**, 185207 (2011)Google Scholar - 38.Kaye, P., Mosca, M.: Quantum networks for generating arbitrary quantum states. arXiv:quant-ph/0407102 quant-ph/0407102(2004)
- 39.Julian Kelly, R., Barends, A.G., Fowler, A., Megrant, E., Jeffrey, T.C., White, D., Sank, J.Y., Mutus, B., Campbell, Y, et al.: Chen State preservation by repetitive error detection in a superconducting quantum circuit. Nature
**519**(7541), 66–69 (2015)Google Scholar - 40.Labbé, S., Lorin, E.: On the reservoir technique convergence for nonlinear hyperbolic conservation laws. I. J. Math. Anal. Appl.
**356**(2), 477–497 (2009)MathSciNetzbMATHGoogle Scholar - 41.Lanyon, B.P., Hempel, C., Nigg, D., Müller, M., Gerritsma, R., Zähringer, F., Schindler, P., Barreiro, J.T., Rambach, M., Kirchmair, G., Hennrich, M., Zoller, P., Blatt, R., Roos, C.F.: Universal digital quantum simulation with trapped ions. Science
**334**(6052), 57–61 (2011)Google Scholar - 42.Leveque, R.J.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
- 43.Lloyd, S.: Universal quantum simulators. Science
**273**, 1073–1078 (1996)MathSciNetzbMATHGoogle Scholar - 44.Meyer, D.A.: Quantum computing classical physics. Philosophical Transactions of the Royal Society of London A: Mathematical, Phys. Eng. Sci.
**360**(1792), 395–405 (2002)MathSciNetzbMATHGoogle Scholar - 45.Mezzacapo, A., Sanz, M., Lamata, L., Egusquiza, I.L., Succi, S., Solano, E.: Quantum simulator for transport phenomena in fluid flows. Sci. Rep.
**5**(13153) (2015)Google Scholar - 46.Negrevergne, C., Mahesh, T.S., Ryan, C.A., Ditty, M., Cyr-Racine, F., Power, W., Boulant, N., Havel, T., Cory, D.G., Laflamme, R.: Benchmarking quantum control methods on a 12-qubit system. Phys. Rev. Lett.
**96**, 170501 (2006)Google Scholar - 47.Nielsen, M.A, Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
- 48.Papageorgiou, A., Traub, J.F.: Measures of quantum computing speedup. Phys. Rev. A
**88**, 022316 (2013)Google Scholar - 49.Rønnow, T.F., Wang, Z., Job, J., Boixo, S., Isakov, S.V., Wecker, D., Martinis, J.M., Lidar, D.A., Troyer, M.: Defining and detecting quantum speedup. Science
**345**(6195), 420–424 (2014)Google Scholar - 50.Salathé, Y., Mondal, M., Oppliger, M., Heinsoo, J., Kurpiers, P., Potočnik, A., Mezzacapo, A., Las Heras, U., Lamata, U., Solano, E., Filipp, S., Wallraff, A.: Digital quantum simulation of spin models with circuit quantum electrodynamics. Phys. Rev. X
**5**, 021027 (2015)Google Scholar - 51.Serre, D.: Systémes de lois de conservation. I. Fondations. [Foundations]. Diderot Editeur, Paris. Hyperbolicité, entropies, ondes de choc. [Hyperbolicity, entropies, shock waves] (1996)Google Scholar
- 52.Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput.
**26**(5), 1484–1509 (1997)MathSciNetzbMATHGoogle Scholar - 53.Sinha, S., Russer, P.: Quantum computing algorithm for electromagnetic field simulation. Quantum Inf. Process
**9**(3), 385–404 (2010)MathSciNetzbMATHGoogle Scholar - 54.Smoller, J.: Shock waves and reaction-diffusion equations, vol. 258 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science]. Springer, New York-Berlin (1983)Google Scholar
- 55.Somma, R., Ortiz, G., Gubernatis, J.E., Knill, E., Laflamme, R.: Simulating physical phenomena by quantum networks. Phys. Rev. A
**65**, 042323 (2002)Google Scholar - 56.Steane, A.: Quantum computing. Rep. Prog. Phys.
**61**(2), 117 (1998)MathSciNetGoogle Scholar - 57.Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2004)zbMATHGoogle Scholar
- 58.Vartiainen, J.J., Moetioenen, M., Salomaa, M.M.: Efficient decomposition of quantum gates. Phys. Rev. Lett.
**92**(17), 177902–1 (2004)Google Scholar - 59.Wang, Xi-Lin, Chen, Luo-Kan, Li, W., Huang, H.-L., Liu, C., Chen, C., Luo, Y.-H., Su, Z.-E., Wu, D., Li, Z.-D., Lu, H., Hu, Y., Jiang, X., Peng, C.-Z., Li, L., Liu, N.-L., Chen, Y.-A., Lu, C.-Y., Pan, J.-W.: Experimental ten-photon entanglement. Phys. Rev. Lett.
**117**, 210502 (2016)Google Scholar - 60.Wiebe, N., Berry, D., Hoyer, P., Sanders, B.C.: Higher order decompositions of ordered operator exponentials. J. Phys. A Math. Theor.
**43**(6), 065203 (2010)MathSciNetzbMATHGoogle Scholar - 61.Wiesner, S.: Simulations of many-body quantum systems by a quantum computer. arXiv:quant-ph/9603028 quant-ph/9603028
- 62.Yung, Man-Hong, Nagaj, Daniel, Whitfield, James D., Aspuru-Guzik, A.: Simulation of classical thermal states on a quantum computer A transfer-matrix approach. Phys. Rev. A
**82**, 060302 (2010)Google Scholar - 63.Yung, M.-H., Whitfield, J.D., Boixo, S., Tempel, D.G., Aspuru-Guzik, A.: Introduction to Quantum Algorithms for Physics and Chemistry, pp 67–106. Wiley, Hoboken (2014)zbMATHGoogle Scholar
- 64.Zalka, C.: Efficient simulation of quantum systems by quantum computers. Fortschritte der Physik
**46**(6-8), 877–879 (1998)MathSciNetGoogle Scholar - 65.Zalka, C.: Simulating quantum systems on a quantum computer. Proceedings of the Royal Society of London A: Mathematical, Phys. Eng. Sci.
**454**(1969), 313–322 (1998)zbMATHGoogle Scholar