Advertisement

Numerical Algorithms

, Volume 82, Issue 3, pp 909–935 | Cite as

Proximal-type algorithms for split minimization problem in P-uniformly convex metric spaces

  • C. Izuchukwu
  • G. C. Ugwunnadi
  • O. T. MewomoEmail author
  • A. R. Khan
  • M. Abbas
Original Paper

Abstract

In this paper, we study strong convergence of some proximal-type algorithms to a solution of split minimization problem in complete p-uniformly convex metric spaces. We also analyse asymptotic behaviour of the sequence generated by Halpern-type proximal point algorithm and extend it to approximate a common solution of a finite family of minimization problems in the setting of complete p-uniformly convex metric spaces. Furthermore, numerical experiments of our algorithms in comparison with other algorithms are given to show the applicability of our results.

Mathematics Subject Classification (2010)

47H09 47H10 49J20 49J40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Attouch, H., Bolte, J., Redont P., Soubeyran, A.: Proximal alternating minimization: projection methods for nonconvex problems. An approach based on the Kurdyka-Lojasiewicz inequality. Math. Oper. Res. 35, 438–457 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Attouch, H., Bolte, J., Redont P., Soubeyran, A.: Alternating proximal point algorithms for weakly coupled convex minimization problems. Applications to dynamical gam es and PDE’s. J. Convex Anal. 15(3), 485–506 (2008)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: A new class of alternating proximal minimization algorithms with costs to move, SIAM. J. Optim. 18(3), 1061–1081 (2007)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Abass, H.A., Izuchukwu, C., Ogbuisi, F.U., Mewomo, O.T.: An iterative method for solution of finite families of split minimization problems and fixed point problems. Novi Sad J. Math.  https://doi.org/10.30755/NSJOM.07925 (2018)CrossRefGoogle Scholar
  5. 5.
    Bačák, M.: Computing medians and means in Hadamard spaces. SIAM J. Optim. 24, 1542–1566 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bačák, M.: The proximal point algorithm in metric spaces. Israel J. Math. 194, 689–701 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Banert, S.: Backward-backward splitting in Hadamard spaces. J. Math. Anal. Appl. 414, 656–665 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bauschke, H., Burke, J., Deutsch, F., Hundal, H., Vanderwerff, J.: A new proximal point iteration that converges weakly but not in norm. Proc. Amer. Math. Soc. 133, 1829–1835 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bauschke, H., Matousková, E., Reich, S.: Projection and proximal point methods: convergence results and counterexamples. Nonlinear Anal. 56, 715–738 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Berg, I.D., Nikolaev, I.G.: Quasilinearization and curvature of Alexandrov spaces. Geom. Dedicata 133, 195–218 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cabot, A., Frankel, P.: Alternating proximal algorithms with asymptotically vanishing coupling. Application to domain decomposition for PDE’s. Optimization 61(3), 307–325 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Choi, B.J., Ji, U.C.: The proximal point algorithm in uniformly convex metric spaces. Commun. Korean Math. Soc. 31, 845–855 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cruz Neto, J.X., Lima, B.P., Soares Júnior, P.A.: A splitting minimization method on geodesic spaces, (2013). http://Optimization-online.org/DB_FILE/2013/04/3822.eps
  14. 14.
    Cruz Neto, J.X., Oliveira, P.R., Soares Júnior, P.A., Soubeyran, A.: Learning how to play Nash, potential games and alternating minimization method for structured nonconvex problems on Riemannian manifolds, J. Convex Anal. 20 (2013)Google Scholar
  15. 15.
    Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing, arXiv:0912.3522v4 [math OC] (2010)
  16. 16.
    Dhompongsa, S., Panyanak, B.: On Δ-convergence theorems in CAT(0) spaces. Comput. Math. Appl. 56, 2572–2579 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Espínola, R., Fernández-León, A., Piatek, B.: Fixed points of single-valued and set-valued mappings in uniformly convex metric spaces with no metric convexity. Fixed Point Theory Appl. 2010, 16 (2010). Article ID 169837,  https://doi.org/10.1155/2010/169837 MathSciNetzbMATHGoogle Scholar
  18. 18.
    Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51(2), 257–270 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Jolaoso, L.O., Ogbuisi, F.U., Mewomo, O.T.: An iterative method for solving minimization, variational inequality and fixed point problems in reflexive Banach spaces. Adv. Pure Appl. Math. 9(3), 167–184 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Jolaoso, L.O., Oyewole, K.O., Okeke, C.C., Mewomo, O.T.: A unified algorithm for solving split generalized mixed equilibrium problem and fixed point of nonspreading mapping in Hilbert space. Demonstr. Math. 51, 211–232 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kamimura, S., Takahashi, W.: Approximating solutions of maximal monotone operators in Hilbert spaces. J. Approx. Theory 106, 226–240 (2000)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kimura, Y., Kohsaka, F.: Two modified proximal point algorithm for convex functions in Hadamard spaces. Linear and Nonlinear Anal. 2(1), 69–86 (2016)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Kuwae, K.: Resolvent flows for convex functionals and p-Harmonic maps. Anal. Geom. Metr. Spaces 3, 46–72 (2015)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Kuwae, K.: Jensen’s inequality on convex spaces. Calc. Var. Partial Differential Equations 49(3-4), 1359–1378 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math Soc. 79, 663–683 (2009)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Lim, T.C.: Remarks on some fixed point theorems. Proc. Amer. Math. Soc. 60, 179–182 (1976)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Martinet, B.: Régularisation d’Inéquations Variationnelles par Approximations Successives, Rev.franćaise d’Inform. et de Rech. Opérationnelle 3, 154–158 (1970)zbMATHGoogle Scholar
  29. 29.
    Mewomo, O.T., Ogbuisi, F.U.: Convergence analysis of an iterative method for solving multiple-set split feasibility problems in certain Banach spaces. Quest. Math. 41(1), 129–148 (2018)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Naor, A., Silberman, L.: Poincaré inequalities, embeddings, and wild groups. Compos. Math. 147, 1546–1572 (2011)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Ogbuisi, F.U., Mewomo, O.T.: Iterative solution of split variational inclusion problem in a real Banach space. Afr. Mat. 28(1-2), 295–309 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Ohta, S.: Markov type of Alexandrov spaces of nonnegative curvature, arXiv:0707.0102v3 [math].MG] (2010)
  33. 33.
    Ohta, S.: Uniform convexity and smoothness, and their applications in Finsler geometry. Math. Ann. 343, 669–699 (2009)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Ohta, S.: Convexities of metric spaces. Geom Dedicata 125, 225–250 (2007)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ohta, S.: Regularity of harmonic functions in Cheeger-type Sobolev spaces. Ann. Global Anal. Geom. 26, 397–410 (2004)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Quiroz, E.P., Oliveira, P.: Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds. J. Convex Anal. 16, 49–69 (2009)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Ruiz, D.A., Acedo, G.L., Nicolae, A.: The asymptotic behavior of the composition of firmly nonexpansive mappings, arXiv:1411.6779v1 [math.FA] 25 (2014)
  39. 39.
    Shehu, Y., Mewomo, O.T.: Further investigation into split common fixed point problem for demicontractive operators. Acta Math. Sin. (Engl. Ser.) 32(11), 1357–1376 (2016)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Shehu, Y., Mewomo, O.T., Ogbuisi, F.U.: Further investigation into approximation of a common solution of fixed point problems and split feasibility problems. Acta. Math. Sci. Ser. B, Engl. Ed. 36(3), 913–930 (2016)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Shen, Z.: Lectures on Finsler Geometry. World Scientific Publishing Co., Singapore (2001)CrossRefGoogle Scholar
  42. 42.
    Sturm, K.T.: Probability Measures on Metric Spaces of Nonpositive Curvature, Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), 357-390, Contemp Math., vol. 338. Amer. Math. Soc., Providence, RI (2003)Google Scholar
  43. 43.
    Takahashi, W.: A convexity in metric space and nonexpansive mappings. I, K\(\bar {0}\)odai Math. Sem. Rep. 22, 142–149 (1970)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Ugwunnadi, G.C., Izuchukwu, C., Mewomo, O.T.: Strong convergence theorem for monotone inclusion problem in CAT(0) spaces Afr. Mat.,  https://doi.org/10.1007/s13370-018-0633-x (2018)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Ugwunnadi, G.C., Khan, A.R., Abbas, M.: A hybrid proximal point algorithm for finding minimizers and fixed points in CAT(0) spaces, J. Fixed Point Theory Appl.,  https://doi.org/10.1007/s11784-018-0555-0 (2018)
  46. 46.
    Xu, H.K.: Iterative algorithms for nonlinear operators. J. London. Math. Soc. 2, 240–256 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics, Statistics and Computer ScienceUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.Department of MathematicsUniversity of EswatiniKwaluseniEswatini
  3. 3.Department of Mathematics and StatisticsKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  4. 4.Department of MathematicsGovernment College UniversityLahorePakistan
  5. 5.Department of Mathematics and Applied MathematicsUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations