Advertisement

Preconditioned Richardson iteration for augmented linear systems

  • X. Y. Xiao
  • X. Wang
  • H. W. Yin
Original Paper
  • 22 Downloads

Abstract

For solving a class of augmented linear systems, we propose a new efficient iteration method, which is called preconditioned Richardson iteration (PR). Under suitable restrictions on the iteration parameters, we prove that the iterative sequences converge to the unique solution of the augmented linear system. Moreover, the optimal iteration parameters and the corresponding optimal convergence factor are discussed in detail. Numerical results show that the PR iteration method has an advantage over several other iteration methods by computing with the preconditioned GMRES methods from the point of view of iteration steps and CPU times.

Keywords

Augmented linear system Positive definite SOR-like iteration Spectral radius Convergence analysis 

Mathematics Subject Classification (2010)

65F10 65F50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arrow, K., Hurwicz, L., Uzawa, H.: Studies in Nonlinear Programming. Stanford University Press, Stanford (1958)zbMATHGoogle Scholar
  2. 2.
    Bai, Z.Z.: Structured preconditioners for nonsingular matrices of block two-by-two structures. Math. Comput. 75, 791–815 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bai, Z.Z.: Optimal parameters in the HSS-like methods for saddle-point problems. Numer. Linear Algebra Appl. 16, 447–479 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bai, Z.Z., Benzi, M.: Regularized HSS iteration methods for saddle-point linear systems. BIT Numer. Math. 57, 287–311 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bai, Z.Z., Golub, G.: Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems. IMA J. Numer. Anal. 27, 1–23 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bai, Z.Z., Golub, G., Lu, L.Z., Yin, J.F.: Block triangular and skew-Hermitian splitting methods for positive-definite linear systems. SIAM J. Sci. Comput. 26, 844–863 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bai, Z.Z., Golub, G., Ng, M.: On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. Linear Algebra Appl. 428, 413–440 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bai, Z.Z., Golub, G., Pan, J.Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 98, 1–32 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bai, Z.Z., Li, G.Q.: Restrictively preconditioned conjugate gradient methods for systems of linear equations. IMA J. Numer. Anal. 23, 561–580 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bai, Z.Z., Li, G.Q., Ng, M.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24, 603–626 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bai, Z.Z., Parlett, B., Wang, Z.Q.: Ongeneralized successive overrelaxationmethods for augmented linear systems. Numer. Math. 102, 1–38 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bai, Z.Z., Wang, Z.Q.: Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems. J. Comput. Appl. Math. 187, 202–226 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bai, Z.Z., Wang, Z.Q.: On parameterized inexact Uzawa methods for generalized saddle point problems. Linear Algebra Appl. 428, 2900–2932 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Benzi, M., Golub, G.: Apreconditioner for generalized saddle point problems. SIAM J. Matrix Anal. Appl. 26, 20–41 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bramble, J., Pasciak, J., Vassilev, A.: Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34, 1072–1092 (1997)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Cao, Y., Du, J., Niu, Q.: Shift-splitting preconditioners for saddle point problems. J. Comput. Appl. Math. 272, 239–250 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Cao, Y., Ren, Z.R., Shi, Q.: A simplified HSS preconditioner for generalized saddle point problems. BIT Numer. Math. 56, 423–439 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Chao, Z., Zhang, N.M., Lu, Y.Z.: Optimal parameters of the generalized symmetric SOR method for augmented systems. J. Comput. Appl. Math. 266, 52–60 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Darvishi, M., Hessari, P.: Symmetric SOR method for augmented systems. Appl. Math. Comput. 183, 409–415 (2006)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Darvishi, M., Hessari, P.: A modified symmetric successive overrelaxation method for augmented systems. Comput. Math. Appl. 61, 3128–3135 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Elman, H., Golub, G.: Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31, 1645–1661 (1994)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Elman, H., Silvester, D.: Fast nonsymmetric iterations and preconditioning for NavierC-Stokes equations. SIAM J. Sci. Comput. 17, 33–46 (1996)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Elman, H., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics. Oxford University Press, New York (2005)zbMATHGoogle Scholar
  24. 24.
    Fischer, B., Ramage, A., Silvester, D., Wathen, A.: Minimum residual methods for augmented systems. BIT Numer. Math. 38, 527–543 (1998)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Golub, G., Wu, X., Yuan, J.Y.: SOR-Like methods for augmented systems. BIT Numer. Math. 41, 71–85 (2001)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Guo, P., Li, C.X., Wu, S.L.: A modified SOR-like method for the augmented systems. J. Comput. Appl. Math. 274, 58–69 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Huang, Z.G., Wang, L.G., Xu, Z., Cui, J.J.: Improved PPHSS iterative methods for solving nonsingular and singular saddle point problems. Comput. Math. Appl. 72, 92–109 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Huang, Z.G., Wang, L.G., Xu, Z., Cui, J.J.: The generalized modified shift-splitting preconditioners for nonsymmetric saddle point problems. Appl. Math. Comput. 299, 95–118 (2017)MathSciNetGoogle Scholar
  29. 29.
    Li, C.J., Li, B.J., Evans, D.: A generalized successive overrelaxation method for the least squares problems. BIT Numer. Math. 38, 347–356 (1998)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Li, C.J., Li, Z., Evans, D., Zhang, T.: A note on an SOR-like method for augmented systems. IMA J. Numer. Anal. 23, 581–592 (2003)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Li, J., Zhang, N.M.: A triple-parameter modified SSOR method for solving singular saddle point problems. BIT Numer. Math. 56, 501–521 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Liang, Z.Z., Zhang, G.F.: PU-STS Method for non-Hermitian saddle-point problems. Appl. Math. Lett. 46, 1–6 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Liang, Z.Z., Zhang, G.F.: Convergence behavior of generalized parameterized Uzawa method for singular saddle-point problems. J. Comput. Appl. Math. 311, 293–305 (2017)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Liu Q.H., Liu A.J.: Block SOR methods for the solution of indefinite least squares problems. Calcolo 51, 367–379 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ma, C.F., Zheng, Q.Q.: The corrected Uzawa method for solving saddle point problems. Numer. Linear Algebra Appl. 22, 717–730 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Njeru, P., Guo, X.P.: Accelerated SOR-like method for augmented linear systems. BIT Numer. Math. 56, 557–571 (2016)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Salkuyeh, D., Hezari, D., Edalatpour, V.: Generalized SOR iterative method for a class of complex symmetric linear system of equations. Int. J. Comp. Math. 92, 802–815 (2015)CrossRefGoogle Scholar
  38. 38.
    Santos, C., Sival, B., Yuan, J.Y.: Block SOR method for rank deficient least squares problems. Comput. Appl. Math. 100, 1–9 (1998)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Wang, X., Li, W.W., Mao, L.Z.: On positive-definite and skew-Hermitian splitting iteration methods for continuous Sylvester equation AX + XB = C. Comput. Math. Appl. 66, 2352–2361 (2013)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Wang, X., Li, Y., Dai, L.: On Hermitian and skew-Hermitian splitting iteration methods for the linear matrix equation AXB = C. Comput. Math. Appl. 65, 657–664 (2013)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Wright, S.: Stability of augmented systems factorizations in interior-point methods. SIAM Matrix Anal. Appl. 18, 191–222 (1997)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Xiao, X.Y., Wang, X.: A new single-step iteration method for solving complex symmetric linear systems. Numer. Algorithms 78, 643–660 (2018)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Yin, J.F., Bai, Z.Z.: The restrictively preconditioned conjugate gradient methods on normal residual for block two-by-two linear systems. J. Comput. Math. 26, 240–249 (2008)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Young, D.: Iterative Solutions of Large Linear Systems. Academic Press, New York (1971)Google Scholar
  45. 45.
    Zhang C.H., Wang X., Tang X.B.: Generalized AOR method for solving a class of generalized saddle point problems. J. Comput. Appl. Math. 350, 69–79 (2019)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Zhang, G.F., Lu, Q.H.: On generalized symmetric SOR method for augmented systems. J. Comput. Appl. Math. 219, 51–58 (2008)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Zhang, J.J., Shang, J.J.: A class of uzawa-SOR methods for saddle point problems. Appl. Math. Comput. 216, 2163–2168 (2010)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Zhou, R., Wang, X., Tang, X.B.: Preconditioned positive-definite and skew-Hermitian splitting iteration methods for continuous Sylvester equations AX + XB = C. East Asian. J. Appl. Math. 7, 55–69 (2017)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, School of SciencesNanchang UniversityNanchangChina
  2. 2.Numerical Simulation and High-Performance Computing Laboratory, School of SciencesNanchang UniversityNanchangChina

Personalised recommendations