Advertisement

Optimal rates of linear convergence of the averaged alternating modified reflections method for two subspaces

  • Francisco J. Aragón Artacho
  • Rubén Campoy
Original Paper
  • 18 Downloads

Abstract

The averaged alternating modified reflections (AAMR) method is a projection algorithm for finding the closest point in the intersection of convex sets to any arbitrary point in a Hilbert space. This method can be seen as an adequate modification of the Douglas–Rachford method that yields a solution to the best approximation problem. In this paper, we consider the particular case of two subspaces in a Euclidean space. We obtain the rate of linear convergence of the AAMR method in terms of the Friedrichs angle between the subspaces and the parameters defining the scheme, by studying the linear convergence rates of the powers of matrices. We further optimize the value of these parameters in order to get the minimal convergence rate, which turns out to be better than the one of other projection methods. Finally, we provide some numerical experiments that demonstrate the theoretical results.

Keywords

Best approximation problem Linear convergence Averaged alternating modified reflections method Linear subspaces Friedrichs angle 

Mathematics Subject Classification (2010)

65F10 65K05 65F15 15A08 47H09 90C25 41A25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are thankful to the anonymous referees for their very careful reading and constructive suggestions. We would also like to thank one of the referees of [2] for suggesting us this interesting project.

Funding information

This work was partially supported by Ministerio de Economía, Industria y Competitividad (MINECO) of Spain and European Regional Development Fund (ERDF), grant MTM2014-59179-C2-1-P. F.J. Aragón Artacho was supported by the Ramón y Cajal program by MINECO and ERDF (RYC-2013-13327) and R. Campoy was supported by MINECO and European Social Fund (BES-2015-073360) under the program “Ayudas para contratos predoctorales para la formación de doctores 2015.”

References

  1. 1.
    Agmon, S.: The relaxation method for linear inequalities. Canad. J. Math. 6(3), 382–392 (1954)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aragón Artacho, F.J., Campoy, R.: A new projection method for finding the closest point in the intersection of convex sets. Comput. Optim. Appl. 69(1), 99–132 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)CrossRefGoogle Scholar
  4. 4.
    Bauschke, H.H., Bello-Cruz, J., Nghia, T.T., Phan, H.M., Wang, X.: The rate of linear convergence of the Douglas–Rachford algorithm for subspaces is the cosine of the Friedrichs angle. J. Approx. Theory 185, 63–79 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bauschke, H.H., Bello-Cruz, J., Nghia, T.T., Phan, H.M., Wang, X.: Optimal rates of linear convergence of relaxed alternating projections and generalized Douglas–Rachford methods for two subspaces. Numer. Algor. 73(1), 33–76 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces Lecture Notes in Mathematics, vol. 2057. Springer, Heidelberg (2012)Google Scholar
  7. 7.
    Cegielski, A., Suchocka, A.: Relaxed alternating projection methods. SIAM J. Optim. 19(3), 1093–1106 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Censor, Y., Cegielski, A.: Projection methods: an annotated bibliography of books and reviews. Optimization 64(11), 2343–2358 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cinderella software. http://www.cinderella.de
  10. 10.
    Deutsch, F.: Best Approximation in Inner Product Spaces CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 7. Springer, New York (2001)CrossRefGoogle Scholar
  11. 11.
    Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Amer. Math. Soc. 82, 421–439 (1956)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(1), 293–318 (1992)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Escalante, R., Raydan, M.: Alternating Projection Methods Fundamentals of Algorithms, vol. 8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2011)CrossRefGoogle Scholar
  14. 14.
    Fält, M., Giselsson, P.: Line search for generalized alternating projections. In: 2017 American Control Conference (ACC), pp. 4637–4642. IEEE (2017)Google Scholar
  15. 15.
    Fält, M., Giselsson, P.: Optimal convergence rates for generalized alternating projections. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 2268–2274. IEEE (2017)Google Scholar
  16. 16.
    Gubin, L.G., Polyak, B.T., Raik, E.V.: The method of projections for finding the common point of convex sets. USSR Comp. Math. Math. Phys. 7(6), 1–24 (1967)CrossRefGoogle Scholar
  17. 17.
    Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)zbMATHGoogle Scholar
  18. 18.
    Hunter, J.D.: Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007)CrossRefGoogle Scholar
  19. 19.
    Kayalar, S., Weinert, H.L.: Error bounds for the method of alternating projections. Math. Control Signal Syst. 1(1), 43–59 (1988)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lapidus, M.L.: Generalization of the Trotter–Lie formula. Integral Equ. Operator Theory 4(3), 366–415 (1981)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Luke, D.R.: Finding best approximation pairs relative to a convex and a prox-regular set in a Hilbert space. SIAM J. Optim. 19(2), 714–739 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia (2000)CrossRefGoogle Scholar
  24. 24.
    Motzkin, T.S., Schoenberg, I.J.: The relaxation method for linear inequalities. Canad. J. Math. 6(3), 393–404 (1954)MathSciNetCrossRefGoogle Scholar
  25. 25.
    von Neumann, J.: Functional Operators II: The Geometry of Orthogonal Spaces. Princeton University Press. (Reprint of mimeographed lecture notes first distributed in 1933) (1950)Google Scholar
  26. 26.
    Reich, S.: A limit theorem for projections. Linear Multilinear Algebra 13(3), 281–290 (1983)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Reich, S., Zalas, R.: The optimal error bound for the method of simultaneous projections. J. Approx. Theory 223, 96—107 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of AlicanteAlicanteSpain

Personalised recommendations