Advertisement

Numerical Algorithms

, Volume 81, Issue 3, pp 1157–1179 | Cite as

A new combined characteristic mixed finite element method for compressible miscible displacement problem

  • Jiansong ZhangEmail author
Original Paper
  • 17 Downloads

Abstract

A new combined characteristic mixed finite element method is developed for solving compressible miscible displacement in porous media. In this algorithm, the splitting mixed finite element (SMFE) method is applied for solving the parabolic-type pressure equation, and the mass-conservative characteristic (MCC) finite element method is applied for solving the convection-diffusion type concentration equation. The application of the splitting mixed element method results in a symmetric positive definite coefficient matrix of the separated mixed element system, while the mass-conservative characteristic finite element method not only does well in handling convection-dominant diffusion problem but also keeps mass balance. The convergence of this method is considered and the optimal L2-norm error estimate is also derived. Finally, some numerical examples are provided to confirm our theoretical analysis.

Keywords

The method of characteristics Mass-conservative Splitting system Error estimate Miscible displacement problem 

Mathematics Subject Classification (2010)

65M12 65M15 65M25 65M60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding information

This work was supported partially by the National Natural Science Foundation of China (grant number 11401588), the Natural Science Foundation of Shandong Province (grant number ZR2014AQ005), and the Fundamental Research Funds for the Central Universities(grant number 17CX02043).

References

  1. 1.
    Douglas, J. Jr., Roberts, J.E.: Numerical methods for a model for compressible miscible displacement in porous media. Math. Comp. 41, 441–459 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Douglas, J. Jr.: Finite difference methods for two-phase incompressible flow in porous media. SIAM J. Numer. Anal. 20, 681–696 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Douglas, J. Jr.: In: Oden, J.T. (ed.) The Numerical Simulation of Miscible Displacement. Computational Methods in Nonlinear Mechanics. North Holland, Amsterdam (1980)Google Scholar
  4. 4.
    Peaceman, D.W.: Fundamentals of numerical reservoir simulation. Elsevier, New York (1977)Google Scholar
  5. 5.
    Chou, S.H., Li, Q.: Mixed finite element methods for compressible miscible displacement in porous media. Math. Comp. 57, 507–527 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Douglas, J. Jr., Ewing, R.E., Wheeler, M.F.: A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media. RAIRO Anal. Numer. 17, 249–256 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Douglas, J. Jr., Ewing, R.E., Wheeler, M.F.: The approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO Anal. Numer. 17, 17–33 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Yuan, Y.R.: Characteristic mixed finite element method for enhanced oil recovery simulation and optimal order error estimate. Chin. Sci. Bull 21, 1761–1766 (1993)zbMATHGoogle Scholar
  9. 9.
    Zhang, J.S., Zhu, J., Zhang, R., Yang, D.P., Loula, A.F.D.: A combined discontinuous Galerkin finite element method for miscible displacement problem. J. Comput. Appl. Math. 309, 44–55 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Yang, D.P.: A splitting positive definite mixed element method for miscible displacement of compressible flow in porous media. Numer. Meth. Part. Differ. Eq. 17, 229–249 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Zhang, J.S., Yang, D.P.: A fully-discrete splitting positive definite mixed finite element scheme for compressible miscible displacement in porous media. J. Shandong Univ. (Nat. Sci.) 41, 1–10 (2006)Google Scholar
  12. 12.
    Zhang, J.S., Yang, D.P.: A splitting positive definite mixed element method for second order hyperbolic equations. Numer. Meth. Part. Differ. Eq. 25:3, 622–636 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Zhang, J.S., Guo, H.: A split least-squares characteristic mixed element method for nonlinear nonstationary convection-diffusion problem. Inter. J. Comput. Math. 89:7, 932–943 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Zhang, J.S., Yang, D.P., Shen, S.Q., Zhu, J.: A new MMOCAA-MFE method for compressible miscible displacement in porous media. Appl. Numer. Math. 80, 65–80 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Zhang, J.S., Zhu, J., Yang, D.P., Guo, H.: A characteristic splitting mixed finite element method for three-dimensional saltwater intrusion problem. J. Nonlinear Sci. Appl. 9, 5806–5820 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bell, J.B., Dawson, C.N., Shubin, G.R.: An unsplit high-order Godunov scheme for scalar conservation laws in two dimensions. J. Comput. Phys. 74, 1–24 (1988)CrossRefzbMATHGoogle Scholar
  17. 17.
    Johnson, C.: Streamline Diffusion Methods for Problems in Fluid Mechanics. Finite Element in Fluids VI. Wiley, New York (1986)Google Scholar
  18. 18.
    Yang, D.P.: Analysis of least-squares mixed finite element methods for nonlinear nonstationary convection-diffusion problems. Math. Comput. 69, 929–963 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Douglas, J. Jr., Russell, T.F.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sun, T.J., Yuan, Y.R.: An approximation of incompressible miscible displacement in porous media by mixed finite element method and characteristics-mixed finite element method. J. Comput. Appl. Math. 228, 391–411 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Cella, M.A., Russell, T.F., Herrera, I., Ewing, R.E.: An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equations. Adv. Water Res. 13, 187–206 (1990)CrossRefGoogle Scholar
  22. 22.
    Wang, H.: An optimal-order error estimate for a family of ELLAM-MFEM approximations to porous medium flow. SIAM J. Numer. Anal. 46, 2133–2152 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Douglas, J. Jr., Huang, C.S., Pereira, F.: The modified method of characteristics with adjusted advection. Numer. Math. 83, 353–369 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Rui, H. , Tabata, M.: A mass-conservative finite element scheme for convection-diffusion problems. J. Sci. Comput. 43, 416–432 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Li, X., Rui, H.: A MCC finite element approximation of incompressible miscible displacement in porous media. Comput. Math. Appl. 70, 750–764 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Li, X., Rui, H., Xu, W.: A new MCC-MFE method for compressible miscible displacement in porous media. J. Comput. Appl. Math. 302, 139–156 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Adams, R.A.: Sobolev Spaces. Academic, New York (1975)zbMATHGoogle Scholar
  28. 28.
    Sun, S., Riviera, B., Wheeler, M.F.: A Combined Mixed Finite Element and Discontinuous Galerkin Method for Miscible Displacement Problem in Porous Media. Recent Progress in Computational and Applied PDES, pp. 323–351 (2002)Google Scholar
  29. 29.
    Ciarlet, P.G.: The finite element methods for elliptic problems. North-Holland, New York (1978)Google Scholar
  30. 30.
    Brezzi, F., Douglas, J. Jr., Duran, R., Fortin, M.: Mixed finite elements for second order elliptic problems in three variables. Numer. Math. 51, 237–250 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Breezi, F., Douglas, J. Jr., Fortin, M., Marini, L.D.: Efficient rectangular mixed finite elements in two and three space variables. RAIRO Model Math. Anal. Numer. 4, 581–604 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Breezi, F., Douglas, J. Jr., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Nedelec, J.C.: Mixed finite element in r3. Numer. Math. 35, 315–341 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Raviart, P.A., Thomas, J.M.: A Mixed Finite Element Method for 2Nd Order Elliptic Problems. Mathematical Aspects of Finite Element Methods, Lecture Notes in Math (606), pp. 292–315. Springer Verlag, Berlin (1977)Google Scholar
  35. 35.
    Wheeler, M.F.: A priori error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10, 723–759 (1973)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied MathematicsChina University of PetroleumQingdaoPeople’s Republic of China

Personalised recommendations