Advertisement

Numerical Algorithms

, Volume 81, Issue 3, pp 915–946 | Cite as

Bilevel optimization with a multiobjective problem in the lower level

  • Roberto Andreani
  • Viviana A. Ramirez
  • Sandra A. SantosEmail author
  • Leonardo D. Secchin
Original Paper
  • 64 Downloads

Abstract

Bilevel problems model instances with a hierarchical structure. Aiming at an efficient solution of a constrained multiobjective problem according with some pre-defined criterion, we reformulate this semivectorial bilevel optimization problem as a classic bilevel one. This reformulation intents to encompass all the objectives, so that the properly efficient solution set is recovered by means of a convenient weighted-sum scalarization approach. Inexact restoration strategies potentially take advantage of the structure of the problem under consideration, being employed as an alternative to the Karush-Kuhn-Tucker reformulation of the bilevel problem. Genuine multiobjective problems possess inequality constraints in their modeling, and these constraints generate theoretical and practical difficulties to our lower level problem. We handle these difficulties by means of a perturbation strategy, providing the convergence analysis, together with enlightening examples and illustrative numerical tests.

Keywords

Bilevel optimization Inexact restoration Multiobjective optimization KKT reformulation Numerical experiments 

Mathematics Subject Classification (2010)

90C29 65K05 49M37 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are thankful to an anonimous reviewer, whose remarks and suggestions have provide improvements upon the original version of the manuscript.

References

  1. 1.
    Andreani, R., Castro, S.L.C., Chela, J.L., Friedlander, A., Santos, S.A.: An inexact-restoration method for nonlinear bilevel programming problems. Comput. Optim. Appl. 43(3), 307–328 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Benson, H.P.: An improved definition of proper efficiency for vector maximization with respect to cones. J. Math. Anal. Appl. 71(1), 232–241 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Benson, H.P.: Optimization over the efficient set. J. Math. Anal. Appl. 98(2), 562–580 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bonnel, H., Morgan, J.: Semivectorial bilevel optimization problem: penalty approach. J. Optim. Theory Appl. 131(3), 365–382 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bonnel, H., Morgan, J.: Optimality conditions for semivectorial bilevel convex optimal control problems, Proceedings in Mathematics & Statistics, vol. 50, pp. 5–78. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  6. 6.
    Borwein, J.: Proper efficient points for maximizations with respect to cones. SIAM J. Control. Optim. 15(1), 57–63 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bskens, C., Wassel, D.: The ESA NLP Solver WORHP, chap. 8. Springer. Springer Optimization and Its Applications 73, 85–110 (2012)CrossRefGoogle Scholar
  8. 8.
    Bueno, L.F., Haeser, G., Martínez, J.M.: An inexact restoration approach to optimization problems with multiobjective constraints under weighted-sum scalarization. Optim. Lett. 10(6), 1315–1325 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Deb, K.: Multi-objective genetic algorithms: problem difficulties and construction of test problems. Evol. Comput. 7(3), 205–230 (1999)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)zbMATHGoogle Scholar
  11. 11.
    El-Bakry, A.S., Tapia, R.A., Tsuchiya, T., Zhang, Y.: On the formulation and theory of the newton interior-point method for nonlinear programming. J. Optim. Theory Appl. 89(3), 507–541 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fülöp, J.: On the equivalence between a linear bilevel programming problem and linear optimization over the efficient set. Technical report WP93-1, Laboratory of Operations Research and Decision Systems, Computer and Automation Institute, Hungarian Academy of Sciences (1993)Google Scholar
  13. 13.
    Fletcher, R., Leyffer, S.: Numerical experience with solving MPECs as NLPs. Tech. rep., University of Dundee Report NA pp. 210 (2002)Google Scholar
  14. 14.
    Fletcher, R., Leyffer, S.: Solving mathematical programs with complementarity constraints as nonlinear programs. Optimization Methods and Software 19(1), 15–40 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fletcher, R., Leyffer, S., Ralph, D., Scholtes, S.: Local convergence of SQP methods for mathematical programs with equilibrium constraints. SIAM J. Optim. 17(1), 259–286 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22(3), 618–630 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Guo, X.L., Li, S.J.: Optimality conditions for vector optimization problems with difference of convex maps. J. Optim. Theory Appl. 162(3), 821–844 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    HSL. A collection of Fortran codes for large scale scientific computation. Available at http://www.hsl.rl.ac.uk/
  19. 19.
    Huband, S., Barone, L., While, L., Hingston, P.: A scalable multi-objective test problem toolkit, pp. 280–295. Springer, Berlin (2005)zbMATHGoogle Scholar
  20. 20.
    Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, J. (ed.) Proceedings of the second Berkeley symposium on mathematical statistics and probability, pp. 481–492. University of California Press, Berkeley (1951)Google Scholar
  21. 21.
    Martínez, J.M.: Inexact-restoration method with Lagrangian tangent decrease and new merit function for nonlinear programming. J. Optim. Theory Appl. 3(1), 39–58 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Martínez, J.M., Pilotta, E.A.: Inexact-restoration algorithm for constrained optimization. J. Optim. Theory Appl. 104(1), 135–163 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Martínez, J.M., Svaiter, B.F.: A practical optimality condition without constraint qualifications for nonlinear programming. J. Optim. Theory Appl. 118(1), 117–133 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)zbMATHGoogle Scholar
  25. 25.
    Pilotta, E.A., Torres, G.A.: An inexact restoration package for bilevel programming problems. Appl. Math. 15(10A), 1252–1259 (2012)CrossRefGoogle Scholar
  26. 26.
    Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11(4), 918–936 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)CrossRefGoogle Scholar
  28. 28.
    Tanaka, M., Watanabe, H., Furukawa, Y., Tanino, T.: GA-based decision support system for multicriteria optimization. In: IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21St Century, vol. 2, pp. 1556–1561 (1995)Google Scholar
  29. 29.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of CampinasCampinasBrazil
  2. 2.Academic Regional Center of BarilocheNational University of ComahueSan Carlos de BarilocheArgentina
  3. 3.Department of Applied MathematicsFederal University of Espírito SantoSão MateusBrazil

Personalised recommendations