Domain decomposition method for the N-body time-independent and time-dependent Schrödinger equations

  • Emmanuel LorinEmail author
Original Paper


This paper is devoted to the derivation of a pleasingly parallel Galerkin method for the time-independent N-body Schrödinger equation, and its time-dependent version modeling molecules subject to an external electric field (Bandrauk 1994; Bandrauk et al., J. Phys. B-Atom. Mol. Opt. Phys. 46(15), 153001, 2013; Cohen-Tannoudji et al. 1992). In this goal, we develop a Schwarz waveform relaxation (SWR) domain decomposition method (DDM) for the N-body Schrödinger equation. In order to optimize the efficiency and accuracy of the overall algorithm, (i) we use mollifiers to regularize the singular potentials and to approximate the Schrödinger Hamiltonian, (ii) we select appropriate orbitals, and (iii) we carefully derive and approximate the SWR transmission conditions. Some low-dimensional numerical experiments are presented to illustrate the methodology.


N-body Schrödinger equation Domain decomposition method Mollifiers Parallel computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author would like to thank Prof. C.R. Anderson (UCLA) for helpful discussions about mollifiers and grid-based methods for solving the N-body Schrödinger equation.


  1. 1.
    Anderson, CR: Compact polynomial mollifiers for Poisson’s equation. Technical Report CAM-14-43, Department of Mathematics, UCLA, Los Angeles (2014)Google Scholar
  2. 2.
    Anderson, CR: Grid based solutions of the N-particle Schrödinger equation. Technical Report CAM-15-10, Department of Mathematics, UCLA, Los Angeles (2015)Google Scholar
  3. 3.
    Anderson, CR: Uniform grid computation of smooth hydrogenic orbitals. Technical Report CAM-15-09, Department of Mathematics, UCLA, Los Angeles (2015)Google Scholar
  4. 4.
    Antoine, X., Lorin, E.: Lagrange - Schwarz waveform relaxation domain decomposition methods for linear and nonlinear quantum wave problems. Appl. Math. Lett. 57, 38–45 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Antoine, X., Lorin, E.: An analysis of Schwarz waveform relaxation domain decomposition methods for the imaginary-time linear Schrödinger and Gross-Pitaevskii equations. Numer. Math., 137(4) (2017)Google Scholar
  6. 6.
    Antoine, X., Lorin, E.: Rate of convergence for some Schwarz waveform relaxation domain decomposition methods for the time-dependent Schrödinger equation, Submitted (2017)Google Scholar
  7. 7.
    Antoine, X., Lorin, E.: Multilevel preconditioning techniques for schwarz waveform relaxation domain decomposition methods for real- and imaginary-time nonlinear Schrödinger equations. To appear in Applied Math. Comput. (2018)Google Scholar
  8. 8.
    Antoine, X., Lorin, E.: Asymptotic estimates of the convergence of classical Schwarz waveform relaxation domain decomposition methods for two-dimensional stationary quantum waves. To appear in ESAIM: Mathematical Modeling and Numerical Analysis (M2AN) (2018)Google Scholar
  9. 9.
    Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., Schädle, A.: A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4(4), 729–796 (2008)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Antoine, X., Lorin, E., Bandrauk, A.D.: Domain decomposition method and high-order absorbing boundary conditions for the numerical simulation of the time dependent Schrödinger equation with ionization and recombination by intense electric field. J. Sci. Comput. 64(3), 620–646 (2014)CrossRefzbMATHGoogle Scholar
  11. 11.
    Antoine, X., Lorin, E., Tang, Q.: A friendly review to absorbing boundary conditions and perfectly matched layers for classical and relativistic quantum wave equations. Mol. Phys., 115(15-16): Special Issue in honour of André D. Bandrauk (2017)Google Scholar
  12. 12.
    Bandrauk, A.: Molecules in Laser Fields, chap 1. Dekker, New York (1994)Google Scholar
  13. 13.
    Bandrauk, A.D., Fillion-Gourdeau, F., Lorin, E.: Atoms and molecules in intense laser fields: gauge invariance of theory and models. J. Phys. B-Atom. Mol. Opt. Phys. 46(15), 153001 (2013)CrossRefGoogle Scholar
  14. 14.
    Bao, W., Du, Q.: Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow. SIAM J. Sci. Comput. 25(5), 1674–1697 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Besse, C., Xing, F: Schwarz waveform relaxation method for one dimensional Schrödinger equation with general potential. Numer. Algorithms 74(2), 393–426 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Atom-photon interactions. Wiley Interscience, New York (1992)Google Scholar
  17. 17.
    Corkum, P.-B.: Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1993 (1994)Google Scholar
  18. 18.
    Dolean, V., Jolivet, P., Nataf, F: An Introduction to domain decomposition methods: Theory and Parallel Implementation. SIAM, Philadelphia (2015)CrossRefzbMATHGoogle Scholar
  19. 19.
    Gander, M., Halpern, L.: Optimized Schwarz waveform relaxation methods for advection reaction Diffusion Problems. SIAM J. Numer. Anal. 45(2), 666–697 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Gander, M.J., Kwok, F.: On the applicability of Lions’ energy estimates in the analysis of discrete optimized Schwarz methods with cross points. In: Domain Decomposition Methods in Science and Engineering XX, volume 91 of Lecture Notes in Computational Science and Engineering, pp 475–483. Springer, Heidelberg (2013)Google Scholar
  21. 21.
    Gander, M.J., Santugini, K.: Cross-points in domain decomposition methods with a finite element discretization. Electron. Trans. Numer. Anal. 45, 219–240 (2016)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Gander, M.J., Halpern, L., Nataf, F.: Optimal convergence for overlapping and non-overlapping schwarz waveform relaxation. In: Eleventh International Conference of Domain Decomposition Methods (1999)Google Scholar
  23. 23.
    Halpern, L., Szeftel, J.: Optimized and quasi-optimal Schwarz waveform relaxation for the one-dimensional Schrödinger equation. Math. Models Methods Appl. Sci. 20(12), 2167–2199 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hörmander, L.: Linear Partial Differential Operators. Springer, Berlin (1976)zbMATHGoogle Scholar
  25. 25.
    Hörmander, L.: The Analysis of linear partial differential Operators. III. Classics in Mathematics. Springer, Berlin (2007). Pseudo-differential operatorsCrossRefzbMATHGoogle Scholar
  26. 26.
    Kormann, K., Larsson, E.: A Galerkin radial basis function method for the Schrödinger equation. SIAM J. Sci. Comput. 35(6), A2832–A2855 (2013)CrossRefzbMATHGoogle Scholar
  27. 27.
    Lewenstein, M., Balcou, Ph., Ivanov, M.Yu., L’Huillier, A., Corkum, P.B.: Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49(3), 2117–2132 (1994)CrossRefGoogle Scholar
  28. 28.
    Nirenberg, L.: Lectures on linear partial differential equations. American Mathematical Society, Providence (1973)CrossRefzbMATHGoogle Scholar
  29. 29.
    Saad, Y., Schultz, W.: GMRES: a generalized minimal algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    St-Cyr, A., Gander, M.J., Thomas, S.J.: Optimized multiplicative, additive, and restricted additive Schwarz preconditioning. SIAM J. Sci. Comput. 29 (6), 2402–2425 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Szabo, A., Ostlund, N.S.: Modern quantum chemistry: introduction to advanced Electronic Structure Theory. Dover Books on Chemistry Series. Dover Publications, New York (1996)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsCarleton UniversityOttawaCanada
  2. 2.Centre de Recherches MathématiquesUniversité de MontréalMontréalCanada

Personalised recommendations