Numerical Algorithms

, Volume 80, Issue 3, pp 1037–1058 | Cite as

Implementation of the virtual element method for coupled thermo-elasticity in Abaqus

  • V. Dhanush
  • S. NatarajanEmail author
Original Paper


In this paper, we employ the virtual element method for the numerical solution of linear thermo-elastic problems in two dimensions. The framework is implemented within the commercial software Abaqus using its user element feature. The implementation details of the virtual element method in Abaqus-Matlab software framework are described. The corresponding details on the input data format, which forms the core of the analysis, are given. Both linear and quadratic elements are used within the virtual element framework. A few benchmark problems from linear thermo-elasticity are solved to validate the implementation.


Virtual element method Arbitrary polytopes Stability and consistency Numerical integration Abaqus implementation UEL subroutine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The second author would like to thank Prof. Lourenco Beirão da Veiga for the discussions on the VEM.


  1. 1.
    Wachspress, E.L.: Springer, New York (1971)Google Scholar
  2. 2.
    Sukumar, N.: Int. J. Numer. Methods Eng. 61(12), 2159 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Sukumar, N., Malsch, E.A.: Arch. Comput. Methods Eng. 13(1), 129 (2006)CrossRefGoogle Scholar
  4. 4.
    Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.: Struct. Multidisc. Optim. 45, 329 (2012)CrossRefGoogle Scholar
  5. 5.
    Rand, A., Gillette, A., Bajaj, C.: Math. Comput. 83, 2691 (2014)CrossRefGoogle Scholar
  6. 6.
    Sze, K., Sheng, N.: Finite Elem. Anal. Des. 42(2), 107 (2005)CrossRefGoogle Scholar
  7. 7.
    Botsch, M., Pauly, M., Kobbelt, L., Alliez, P., Lévy, B., Bischoff, S., Röossl, C.: (2007)
  8. 8.
    Jayabal, K., Menzel, A., Arockiarajan, A., Srinivasan, S.: Comput. Mech. 48(4), 421 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Jaskowiec, J., Plucinski, P., Stankiewicz, A.: Finite Elem. Anal. Des. 120, 1 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Biabanaki, S.O.R., Khoei, A.R.: Comput. Mech. 50(1), 19 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kravtsov, D., Fryazinov, O., Adzhiev, V., Pasko, A., Comninos, P.: In: Proceedings of SIGGRAPH, p. 9. (2009)
  12. 12.
    Pereira, A., Talischi, C., Menezes, I.F.M., Paulino, G.H.: Mecánica Computacional 29, 1525 (2010)Google Scholar
  13. 13.
    Talischi, C., Pereira, A., Paulino, G.H., Menezes, I.F.M., Carvalho, M.S.: Int. J. Numer. Methods Eng. 74(2), 134 (2014)CrossRefGoogle Scholar
  14. 14.
    Lipnikov, K., Manzini, G.: J. Comput. Phys. 272(1), 360 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Beirão da Veiga, L., Manzini, G.: The Mimetic Finite Difference Method and the Virtual Element Method for Elliptic Problems with Arbitrary Regularity. Technical Report LA-UR-12-22977 Los Alamos National Laboratory (2012)Google Scholar
  16. 16.
    Beirão da Veiga, L, Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Math. Model. Methods Appl. Sci. 23, 199 (2013)CrossRefGoogle Scholar
  17. 17.
    Beirão da Veiga, L, Brezzi, F., Marini, L.D., Russo, A.: Math. Models Methods Appl. Sci. 24(08), 1541 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gain, A.L., Talischi, C., Paulino, G.H.: Comput. Methods Appl. Mech. Eng. 282, 132 (2014)CrossRefGoogle Scholar
  19. 19.
    Da Veiga, L.B., Brezzi, F., Dassi, F., Marini, L.D., Russo, A.: Chin. Ann. Math. Ser. B 39(2), 315 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Droniou, J.: Math. Models Methods Appl. Sci. 24, 1575 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Cangiani, A., Georgoulis, E.H., Houston, P.: Math. Models Methods Appl. Sci. 24(10), 2009 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    hai Tang, X., Wu, S.C., Zheng, C., hai Zhang, J.: Appl. Math. Mech. 30, 1233 (2009)CrossRefGoogle Scholar
  23. 23.
    Natarajan, S., Ooi, E.T., Chiong, I., Song, C.: Finite Elem. Anal. Des. 85, 101 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ooi, E., Song, C., Natarajan, S.: Int. J. Numer. Methods Eng. 108(9), 1086 (2016)CrossRefGoogle Scholar
  25. 25.
    Natarajan, S., Ooi, E.T., Saputra, A., Song, C.: Eng. Anal. Bound. Elem. 80, 218 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Beirão da Veiga, L., Chernov, A., Mascotto, L., Russo, A.: Numerische Mathematik, pp. 581–613 (2018)Google Scholar
  27. 27.
    Beirão da Veiga, L, Brezzi, F., Marini, L., Russo, A.: Math. Models Methods Appl. Sci. 26(4), 729 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Andersen, O., Nilsen, H.M., Raynaud, X.: arXiv:1606.09508 (2016)
  29. 29.
    Brezzi, F., Marini, L.D.: Comput. Methods Appl. Mech. Eng. 253, 455 (2013)CrossRefGoogle Scholar
  30. 30.
    Wriggers, P., Reddy, B.D., Rust, W., Hudobivnik, B.: J. Comput. Mech. 60(2), 253–268 (2017)CrossRefGoogle Scholar
  31. 31.
    Berrone, S., Benedetto, M.F., Borio, A., Pieraccini, S., Scialò, S.: PAMM 15(1), 19 (2015)CrossRefGoogle Scholar
  32. 32.
    Antonietti, P.F., Bruggi, M., Scacchi, S., Verani, M.: Comput. Math. Appl. 200, 1729 (2011)Google Scholar
  33. 33.
    Ortiz-Bernardin, A., Alvarez, C., Hitschfeld-Kahler, N., Russo, A., Silva-Valenzuela, R., Olate-Sanzana, E.: arXiv:
  34. 34.
    Sutton, O.J.: Numer. Algorithm. 75(4), 1141 (2017). MathSciNetCrossRefGoogle Scholar
  35. 35.
    Abaqus, Dassault Systèmes Simulia Corp, Providence (2012)Google Scholar
  36. 36.
    Floater, M.S.: Acta Numerica 24, 161 (2015)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Papazafeiropoulos, G., niz Calvente, M.M., neda, E.M.P.: Adv. Eng. Softw. 105, 9 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Integrated Modelling and Simulation LabDepartment of Mechanical Engineering, Indian Institute of Technology MadrasChennaiIndia

Personalised recommendations