Advertisement

Numerical Algorithms

, Volume 80, Issue 3, pp 879–902 | Cite as

PQser: a Matlab package for spectral seriation

  • Anna ConcasEmail author
  • Caterina Fenu
  • Giuseppe Rodriguez
Original Paper
  • 65 Downloads

Abstract

Seriation is an important ordering problem which consists of finding the best ordering of a set of units whose interrelationship is defined by a bipartite graph. It has important applications in, e.g., archaeology, anthropology, psychology, and biology. This paper presents a Matlab implementation of an algorithm for spectral seriation by Atkins et al., based on the use of the Fiedler vector of the Laplacian matrix associated to the problem, which encodes the set of admissible solutions into a PQ-tree. We introduce some numerical technicalities in the original algorithm to improve its performance, and point out that the presence of a multiple Fiedler value may have a substantial influence on the computation of an approximated solution, in the presence of inconsistent data sets. Practical examples and numerical experiments show how to use the toolbox to process data sets deriving from real-world applications.

Keywords

Seriation Fiedler value Bipartite graphs PQ-trees Bandwidth reduction 

Mathematics Subject Classification (2010)

65F15 65F50 05C82 91D30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We would like to thank Matteo Sommacal for pointing our attention to the problem of seriation and to its application in archaeology. The paper [37], which he coauthored, was our principal source of information when the research which led to this paper started. We are indebted to the reviewers for their comments and suggestions, which contributed to improve both the form and the content of the paper.

Funding information

The authors are members of the INdAM Research group GNCS, which partially supported the research. Anna Concas gratefully acknowledges Sardinia Regional Government for the financial support of her Ph.D. scholarship (P.O.R. Sardegna F.S.E. Operational Programme of the Autonomous Region of Sardinia, European Social Fund 2014-2020 - Axis III Education and Formation, Objective 10.5, Line of Activity 10.5.12).

References

  1. 1.
    Atkins, J.E., Boman, E.G., Hendrickson, B.: A spectral algorithm for seriation and the consecutive ones problem. SIAM J. Comput. 28(1), 297–310 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barcelo, J.A., Bogdanovic, I.: Mathematics and Archaeology. CRC Press, Boca Raton (2015)CrossRefGoogle Scholar
  3. 3.
    Barnard, S.T., Pothen, A., Simon, H.: A spectral algorithm for envelope reduction of sparse matrices. Numer. Linear Algebra Appl. 2(4), 317–334 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Brainerd, G.W.: The place of chronological ordering in archaeological analysis. Am. Antiq. 16(4), 301–313 (1951)CrossRefGoogle Scholar
  6. 6.
    Brusco, M.J., Steinley, D.: Clustering, seriation, and subset extraction of confusion data. Psychol. Methods 11(3), 271–286 (2006)CrossRefGoogle Scholar
  7. 7.
    Caraux, G., Pinloche, S.: PermutMatrix: A graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics 21(7), 1280–1281 (1979). Package available at http://www.atgc-montpellier.fr/permutmatrix/ CrossRefGoogle Scholar
  8. 8.
    Chepoi, V., Fichet, B.: Recognition of Robinsonian dissimilarities. J. Classif. 14(2), 311–325 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Christof, T., Oswald, M., Reinelt, G.: Consecutive ones and a betweenness problem in computational biology. In: International Conference on Integer Programming and Combinatorial Optimization. Springer, pp. 213–228 (1998)Google Scholar
  10. 10.
    Davis, P.J.: Circulant Matrices. Wiley, New York (1979)zbMATHGoogle Scholar
  11. 11.
    De Abreu, N.M.M.: Old and new results on algebraic connectivity of graphs. Linear Algebra Appl. 423(1), 53–73 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 868(14), 863–14 (1998)Google Scholar
  13. 13.
    Estrada, E.: The Structure of Complex Networks: Theory and Applications. Oxford University Press, Oxford (2012)zbMATHGoogle Scholar
  14. 14.
    Estrada, E., Higham, D.J.: Network properties revealed through matrix functions. SIAM Rev. 52(4), 696–714 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Estrada, E., Knight, P.: A First Course in Network Theory. Oxford University Press, Oxford (2015)zbMATHGoogle Scholar
  16. 16.
    Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23(2), 298–305 (1973)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czech. Math. J. 25(4), 619–633 (1975)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Fiedler, M.: Laplacian of graphs and algebraic connectivity. Banach Center Publ. 25(1), 57–70 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Fogel, F., d’Aspremont, A., Vojnovic, M.: Serialrank: Spectral ranking using seriation. In: Advances in Neural Information Processing Systems, vol. 27, pp. 900–908 (2014)Google Scholar
  20. 20.
    Fogel, F., Jenatton, R., Bach, F., d’Aspremont, A.: Convex relaxations for permutation problems. SIAM J. Matrix Anal. Appl. 36(4), 1465–1488 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Fulkerson, D., Gross, O.: Incidence matrices and interval graphs. Pac. J. Math. 15(3), 835–855 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Greenberg, D.S., Istrail, S.: Physical mapping by STS hybridization: Algorithmic strategies and the challenge of software evaluation. J. Comput. Biol. 2(2), 219–273 (1995)CrossRefGoogle Scholar
  23. 23.
    Hahsler, M., Hornik, K., Buchta, C.: Getting things in order: An introduction to the R package seriation. J. Stat. Softw. 25(3), 1–34 (2008)CrossRefGoogle Scholar
  24. 24.
    Higham, D.J., Kalna, G., Kibble, M.: Spectral clustering and its use in bioinformatics. J. Comput. Appl. Math. 204(1), 25–37 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Hodson, F.R., Kendall, D.G., Tautu, P.: Mathematics in the Archaeological and Historical Sciences. Edimburg University Press, Edimburg (1971)zbMATHGoogle Scholar
  26. 26.
    Juvan, M., Mohar, B.: Optimal linear labelings and eigenvalues of graphs. Discrete Appl. Math. 36(2), 153–168 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kendall, D.G.: A statistical approach to Flinders–Petries sequence-dating. Bull. Int. Stat. Inst. 40(2), 657–681 (1963)MathSciNetGoogle Scholar
  28. 28.
    Kendall, D.G.: Incidence matrices, interval graphs and seriation in archeology. Pac. J. Math. 28(3), 565–570 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kendall, D.G.: A mathematical approach to seriation. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 269(1193), 125–134 (1970)CrossRefGoogle Scholar
  30. 30.
    Laurent, M., Seminaroti, M.: A Lex-BFS-based recognition algorithm for Robinsonian matrices. Discret. Appl. Math. 222, 151–165 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Laurent, M., Seminaroti, M.: Similarity-First Search: A new algorithm with application to Robinsonian matrix recognition. SIAM Discret. Math. 31(3), 1765–1800 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Liiv, I.: Seriation and matrix reordering methods: an historical overview. Stat. Anal. Data Min. 3(2), 70–91 (2010)MathSciNetGoogle Scholar
  33. 33.
    Mirkin, B.G., Rodin, S.N.: Graphs and Genes, Biomathematics, vol. 11. Springer, Berlin (1984)CrossRefGoogle Scholar
  34. 34.
    O’Brien, M.J., Lyman, R.L.: Seriation Stratigraphy and Index Fossils: The Backbone of Archaeological Dating. Kluwer, Norwell (2002)Google Scholar
  35. 35.
    Oswald, M., Reinelt, G.: The simultaneous consecutive ones problem. Theor. Comput. Sci. 410(21–23), 1986–1992 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Petrie, W.M.F.: Sequences in prehistoric remains. J. R. Anthropol. Inst. 29, 295–301 (1899)Google Scholar
  37. 37.
    Piana Agostinetti, P., Sommacal, M.: Il problema della seriazione in archeologia. Rivista di Scienze Preistoriche LV, pp. 29–69 (2005)Google Scholar
  38. 38.
    Préa, P., Fortin, D.: An optimal algorithm to recognize Robinsonian dissimilarities. J. Classif. 31(3), 351 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Robinson, W.S.: A method for chronologically ordering archaeological deposits. Am. Antiq. 16(4), 293–301 (1951)CrossRefGoogle Scholar
  40. 40.
    Seminaroti, M.: Combinatorial Algorithms for the Seriation Problem. Ph.D. thesis, CentER, Tilburg University (2016)Google Scholar
  41. 41.
    Seston, M.: Dissimilarités de Robinson: Algorithmes de reconnaissance et d’approximation. Ph.D. thesis, Aix Marseille 2 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaUniversità di CagliariCagliariItaly
  2. 2.AICES Graduate SchoolRWTH Aachen UniversityAachenGermany

Personalised recommendations