Advertisement

Numerical Algorithms

, Volume 80, Issue 2, pp 521–532 | Cite as

On the asymptotic optimality of error bounds for some linear complementarity problems

  • M. García-Esnaola
  • J. M. PeñaEmail author
Original Paper

Abstract

We introduce strong B-matrices and strong B-Nekrasov matrices, for which some error bounds for linear complementarity problems are analyzed. In particular, it is proved that the bounds of García-Esnaola and Peña (Appl. Math. Lett. 22, 1071–1075, 2009) and of (Numer. Algor. 72, 435–445, 2016) are asymptotically optimal for strong B-matrices and strong B-Nekrasov matrices, respectively. Other comparisons with a bound of Li and Li (Appl. Math. Lett. 57, 108–113, 2016) are performed.

Keywords

Error bounds Linear complementarity problems B-matrices B-Nekrasov matrices P-matrices 

Mathematics Subject Classification (2010)

90C33 90C31 65G50 15A48 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors wish to thank the anonymous referees for their valuable suggestions to improve the paper. This work was partially supported by the Spanish Research Grant MTM2015-65433-P (MINECO/FEDER), Gobierno de Aragón and Fondo Social Europeo.

Funding information

This work was partially supported by the Spanish Research Grant MTM2015-65433-P (MINECO/FEDER), Gobierno de Aragón and Fondo Social Europeo.

References

  1. 1.
    Chen, X., Xiang, S.: Computation of error bounds for P-matrix linear complementarity problems. Math. Program., Ser. A 106, 513–525 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problems. Academic Press, Boston MA (1992)zbMATHGoogle Scholar
  3. 3.
    Cvetković, L., Dai, P.-F., Doroslovaški, K., Li, Y.-T.: Infinity norm bounds for the inverse of Nekrasov matrices. Appl. Math. Comput. 219, 5020–5024 (2013)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Dai, P.-F.: Error bounds for linear complementarity problems of DB-matrices. Linear Algebra Appl. 434, 830–840 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    García-Esnaola, M., Peña, J.M.: Error bounds for linear complementarity problems for B-matrices. Appl. Math. Lett. 22, 1071–1075 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    García-Esnaola, M., Peña, J.M.: A comparison of error bounds for linear complementarity problems of H-matrices. Linear Algebra Appl. 433, 956–964 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    García-Esnaola, M., Peña, J.M.: Error bounds for linear complementarity problems of B S-matrices. Appl. Math. Lett. 25, 1379–1383 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    García-Esnaola, M., Peña, J.M.: B-Nekrasov matrices and error bounds for linear complementarity problems. Numer. Algor. 72, 435–445 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    García-Esnaola, M., Peña, J.M.: \(B_{\pi }^{R}\)-matrices and error bounds for linear complementarity problems. Calcolo 54, 813–822 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 4Th Edn. The Johns Hopkins University Press, Baltimore (2013)Google Scholar
  11. 11.
    Li, C., Li, Y.: Note on error bounds for linear complementarity problems for B-matrices. Appl. Math. Lett. 57, 108–113 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mathias, R., Pang, J.-S.: Error bounds for the linear complementarity problem with a P-matrix. Linear Algebra Appl. 132, 123–136 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Peña, J.M.: A class of P-matrices with applications to the localization of the eigenvalues of a real matrix. SIAM J. Matrix Anal. Appl. 22, 1027–1037 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Peña, J.M.: On an alternative to Gerschgorin circles and ovals of Cassini. Numer. Math. 95, 337–345 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Schäfer, U.: An enclosure method for free boundary problems based on a linear complementarity problem with interval data. Numer. Funct. Anal. Optim. 22, 991–1011 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Szulc, T.: Some remarks on a theorem of Gudkov. Linear Algebra Appl. 225, 221–235 (1995)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Matemática AplicadaUniversidad de ZaragozaZaragozaSpain

Personalised recommendations