Advertisement

Computing eigenpairs of Hermitian matrices in perfect Krylov subspaces

  • Zhong-Zhi BaiEmail author
  • Cun-Qiang Miao
Original Paper
  • 23 Downloads

Abstract

For computing the smallest eigenvalue and the corresponding eigenvector of a Hermitian matrix, by introducing a concept of perfect Krylov subspace, we propose a class of perfect Krylov subspace methods. For these methods, we prove their local, semilocal, and global convergence properties, and discuss their inexact implementations and preconditioning strategies. In addition, we use numerical experiments to demonstrate the convergence properties and exhibit the competitiveness of these methods with a few state-of-the art iteration methods such as Lanczos, rational Krylov sequence, and Jacobi-Davidson, when they are employed to solve large and sparse Hermitian eigenvalue problems.

Keywords

Hermitian eigenproblem Krylov subspace method Inexact iteration Convergence property 

Mathematics Subject Classification (2010)

65F10, 65F15, 15A18 CR: G1.3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are very much indebted to the referees for their constructive comments and valuable suggestions, which greatly improved the original manuscript of this paper.

References

  1. 1.
    Bai, Z.-Z., Miao, C.-Q.: On local quadratic convergence of inexact simplified Jacobi-Davidson method. Linear Algebra Appl. 520, 215–241 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bai, Z.-Z., Miao, C.-Q.: On local quadratic convergence of inexact simplified Jacobi-Davidson method for interior eigenpairs of Hermitian eigenproblems. Appl. Math. Lett. 72, 23–28 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berns-Müller, J., Graham, I.G., Spence, A.: Inexact inverse iteration for symmetric matrices. Linear Algebra Appl. 416, 389–413 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Druskin, V., Knizhnerman, L.: Extended Krylov subspaces: approximation of the matrix square root and related functions. SIAM J. Matrix Anal. Appl. 19, 755–771 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Freitag, M.A., Spence, A.: Convergence of inexact inverse iteration with application to preconditioned iterative solves. BIT 47, 27–44 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Freitag, M.A., Spence, A.: A tuned preconditioner for inexact inverse iteration applied to Hermitian eigenvalue problems. IMA J. Numer. Anal. 28, 522–551 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  8. 8.
    Golub, G.H., Ye, Q.: An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems. SIAM J. Sci. Copmut. 24, 312–334 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Jagels, C., Reichel, L.: The extended Krylov subspace method and orthogonal Laurent polynomials. Linear Algebra Appl. 431, 441–458 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Jagels, C., Reichel, L.: Recursion relations for the extended Krylov subspace method. Linear Algebra Appl. 434, 1716–1732 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jones, M.T., Patrick, M.L.: Bunch-Kaufman factorization for real symmetric indefinite banded matrices. SIAM J. Matrix Anal. Appl. 14, 553–559 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Knizhnerman, L., Simoncini, V.: A new investigation of the extended Krylov subspace method for matrix function evaluations. Numer. Linear Algebra Appl. 17, 615–638 (2010)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Morgan, R.B., Scott, D.S.: Preconditioning the Lanczos algorithm for sparse symmetric eigenvalue problems. SIAM J. Sci. Comput. 14, 585–593 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. SIAM, Philadelphia (2000)CrossRefzbMATHGoogle Scholar
  15. 15.
    Parlett, B.N.: The Symmetric Eigenvalue Problem. SIAM, Philadelphia (1998)CrossRefzbMATHGoogle Scholar
  16. 16.
    Ruhe, A.: Rational Krylov sequence methods for eigenvalue computation. Linear Algebra Appl. 58, 391–405 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ruhe, A.: Rational Krylov: A practical algorithm for large sparse nonsymmetric matrix pencils. SIAM J. Sci. Comput. 19, 1535–1551 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Saad, Y.: Numerical Methods for Large Eigenvalue Problems, 2nd edn. SIAM, Philadelphia (2011)CrossRefzbMATHGoogle Scholar
  19. 19.
    Saad, Y.: On the rates of convergence of the Lanczos and the block-Lanczos methods. SIAM J. Numer. Anal. 17, 687–706 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Shank, S.D., Simoncini, V.: Krylov subspace methods for large-scale constrained Sylvester equations. SIAM J. Matrix Anal. Appl. 34, 1448–1463 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sleijpen, G.L.G., Van der Vorst, H.A.: A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17, 401–425 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Scientific/Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations