Krylov projection methods for linear Hamiltonian systems

  • Lu LiEmail author
  • Elena Celledoni
Original Paper


We study geometric properties of Krylov projection methods for large and sparse linear Hamiltonian systems. We consider in particular energy-preservation. We discuss the connection to structure preserving model reduction. We illustrate the performance of the methods by applying them to Hamiltonian PDEs.


Hamiltonian Energy-preserving Krylov Model reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The second author would like to thank Dr. Long Pei for the helpful discussions and suggestions on previous versions of this paper. We are grateful to the anonymous referees for many useful comments.

Funding information

This work was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie, grant agreement No. 691070.


  1. 1.
    Van der Schaft, A., Jeltsema, D.: Port-Hamiltonian systems theory: an introductory overview. Foundations and Trends in Systems and Control 1(2–3), 173 (2014)CrossRefGoogle Scholar
  2. 2.
    Feng, K., Qin, M.Z.: .. In: Numerical Methods for Partial Differential Equations, pp. 1–37. Springer (1987)Google Scholar
  3. 3.
    McLachlan, R.: Symplectic integration of Hamiltonian wave equations. Numer. Math. 66(1), 465 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Marsden, J.E., Weinstein, A.: The Hamiltonian structure of the Maxwell-Vlasov equations. Physica D: Nonlinear Phenomena 4(3), 394 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Sun, Y., Tse, P.: Symplectic and multisymplectic methods for Maxwell’s equations. J. Comput. Phys. 230(5), 2076 (2010). MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Taylor Michael, E.: Partial Differential Equations, I. Basic Theory, vol. 115. Springer, New York (2011)CrossRefGoogle Scholar
  7. 7.
    Richtmyer, R.D., Morton, K.W.: Difference methods for initial-value problems. Interscience Publishers John Wiley & Sons, Inc., Academia Publishing House of the Czechoslovak Acad (1967)Google Scholar
  8. 8.
    LaBudde, R.A., Greenspan, D.: Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion. Numer. Math. 25(4), 323 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    McLachlan, R.I., Quispel, G., Robidoux, N.: Geometric integration using discrete gradients. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 357(1754), 1021 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Brugnano, L., Iavernaro, F., Trigiante, D.: Hamiltonian boundary value methods (energy preserving discrete line integral methods). Journal of Numerical Analysis Industrial Applied Mathematics 5(1), 17 (2010)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D., Owren, B., O’neale, D., Quispel, G.: Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field” method. J. Comput. Phys. 231(20), 6770 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ge, Z., Marsden, J.: Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators. Phys. Lett. A 133, 134 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Botchev, M.A., Verwer, J.G.: Numerical integration of damped Maxwell equations. SIAM J. Sci. Comput. 31(2), 1322 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Eirola, T., Koskela, A.: Krylov integrators for Hamiltonian systems. BIT Numer. Math. 1–20. (2018)
  15. 15.
    Lopez, L., Simoncini, V.: Preserving geometric properties of the exponential matrix by block Krylov subspace methods. BIT Numer. Math. 46(4), 813 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Archid, A., Bentbib, A.H.: Approximation of the matrix exponential operator by a structure-preserving block Arnoldi-type method. Appl. Numer. Math. 75, 37 (2014). MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Benner, P., Mehrmann, V., Xu, H.: A numerically stable structure-preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils. Numer. Math. 78(3), 329 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Arnol’d, V.I., Dubrovin, B., Kirillov, A., Krichever, I.: Dynamical Systems IV: Symplectic Geometry and Its Applications, vol. 4. Springer Science & Business Media, Berlin (2001)CrossRefGoogle Scholar
  19. 19.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structurepreserving Algorithms for Ordinary Differential Equations, vol. 31. Springer Science & Business Media, Berlin (2006)zbMATHGoogle Scholar
  20. 20.
    Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q. Appl. Math. 9(1), 17 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Benner, P., Faßbender, H., Stoll, M.: A Hamiltonian Krylov–Schur-type method based on the symplectic Lanczos process. Linear Algebra Appl. 435(3), 578 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lall, S., Krysl, P., Marsden, J.E.: Structure-preserving model reduction for mechanical systems. Physica D: Nonlinear Phenomena 184(1), 304 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Celledoni, E., Li, L.: .. In: Proceedings of the ECMI Conference, pp. 663–559 (2016)Google Scholar
  24. 24.
    Benner, P., Faßbender, H.: An implicitly restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem. Linear Algebra Appl. 263, 75 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Watkins, D.S.: On Hamiltonian and symplectic Lanczos processes. Linear Algebra Appl. 385, 23 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Faßbender, H.: A detailed derivation of the parameterized SR algorithm and the symplectic Lanczos method for Hamiltonian matrices. Preprint (2006)Google Scholar
  27. 27.
    Agoujil, S., Bentbib, A., Kanber, A.: A structure preserving approximation method for hamiltonian exponential matrices. Appl. Numer. Math. 62(9), 1126 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Goldstein, H., Poole, C., Safko, J.: Classical Mechanics, 3rd edn. Addison Wesley (2001)Google Scholar
  29. 29.
    Benner, P., Mehrmann, V., Sorensen, D.C.: Dimension Reduction of Large-Scale Systems, vol. 35. Springer, Berlin (2005)CrossRefzbMATHGoogle Scholar
  30. 30.
    Ward, R.C.: Numerical computation of the matrix exponential with accuracy estimate. SIAM J. Num. Anal. 14, 600 (1977)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesNTNUTrondheimNorway

Personalised recommendations