A Dai-Liao conjugate gradient algorithm with clustering of eigenvalues
Original Paper
First Online:
Received:
Accepted:
Abstract
A new value for the parameter in Dai and Liao conjugate gradient algorithm is presented. This is based on the clustering of eigenvalues of the matrix which determine the search direction of this algorithm. This value of the parameter lead us to a variant of the Dai and Liao algorithm which is more efficient and more robust than the variants of the same algorithm based on minimizing the condition number of the matrix associated to the search direction. Global convergence of this variant of the algorithm is briefly discussed.
Keywords
Unconstrained optimization Conjugate gradient algorithms Eigenvalues clustering Condition number Wolfe conditions ConvergencePreview
Unable to display preview. Download preview PDF.
References
- 1.Andrei, N.: Acceleration of conjugate gradient algorithms for unconstrained optimization. Appl. Math. Comput. 213, 361–369 (2009)MathSciNetMATHGoogle Scholar
- 2.Andrei, N.: An unconstrained optimization test functions collection. Adv. Model. Optim. 10, 147–161 (2008)MathSciNetMATHGoogle Scholar
- 3.Andrei, N.: Open problems in nonlinear conjugate gradient algorithms for unconstrained optimization. Bull. Malays. Math. Sci. Soc. 34, 319–330 (2011)MathSciNetMATHGoogle Scholar
- 4.Axelsson, O.: A class of iterative methods for finite element equations. Comput. Methods Appl. Mech. Eng. 9, 123–137 (1976)MathSciNetCrossRefMATHGoogle Scholar
- 5.Axelsson, O., Lindskog, G.: On the rate of convergence of the preconditioned conjugate gradient methods. Numer. Math. 48, 499–523 (1986)MathSciNetCrossRefMATHGoogle Scholar
- 6.Babaie-Kafaki, S., Ghanbari, R.: The Dai-Liao nonlinear conjugate gradient method with optimal parameter choices. Eur. J. Oper. Res. 234, 625–630 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 7.Bongartz, I., Conn, A.R., Gould, N.I.M., Toint, Ph.L.: CUTEr: constrained and unconstrained testing environments. ACM Trans. Math. Softw. 21, 123–160 (1995)CrossRefMATHGoogle Scholar
- 8.Dai, Y.H., Kou, C.X.: A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search. SIAM J. Optim. 23, 296–320 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 9.Dai, Y.H., Liao, L.Z.: New conjugate conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim. 43, 87–101 (2001)MathSciNetCrossRefMATHGoogle Scholar
- 10.Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)MathSciNetCrossRefMATHGoogle Scholar
- 11.Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16, 170–192 (2005)MathSciNetCrossRefMATHGoogle Scholar
- 12.Hestenes, M.R., Steifel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. Sec. B 48, 409–436 (1952)MathSciNetCrossRefMATHGoogle Scholar
- 13.Kaporin, I.E.: New convergence results and preconditioning strategies for the conjugate gradient methods. Numer. Linear Algebra Appl. 1, 179–210 (1994)MathSciNetCrossRefMATHGoogle Scholar
- 14.Kratzer, D., Parter, S.V., Steuerwalt, M.: Block splittings for the conjugate gradient method. Comput. Fluids 11, 255–279 (1983)MathSciNetCrossRefMATHGoogle Scholar
- 15.Meurant, G.: Computer solution of large linear systems. Studies in Mathematics and its Applications, vol 28. North Holland, Elsevier, Amsterdam (1999)Google Scholar
- 16.Pestana, J., Wathen, A.J.: On the choice of preconditioner for minimum residual methods for non-Hermitian matrices. J. Comput. Appl. Math. 249, 57–68 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 17.Reid, J.K.: On the method of conjugate gradients for solution of large sparse systems of linear equations. In: Reid, J.K. (ed.) Large Sparse Sets of Linear Equations, pp 231–254. Academic Press, London (1971)Google Scholar
- 18.Strakoš, Z.: On the real convergence rate of the conjugate gradient method. Linear Algebra Appl. 154–156, 535–549 (1991)MathSciNetCrossRefMATHGoogle Scholar
- 19.Sun, W., Yuan, Y.X.: Optimization theory and methods. Nonlinear Programming. Springer Science + Business Media, New York (2006)MATHGoogle Scholar
- 20.Van der Sluis, A., Van der Vorst, H.A.: The rate of convergence of conjugate gradients. Numer. Math. 48, 543–560 (1986)MathSciNetCrossRefMATHGoogle Scholar
- 21.Winther, R.: Some superlinear convergence results for the conjugate gradient method. SIAM J. Numer. Anal. 17, 14–17 (1980)MathSciNetCrossRefMATHGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC 2017