Numerical Algorithms

, Volume 77, Issue 4, pp 1183–1197 | Cite as

A cubically convergent method for solving the largest eigenvalue of a nonnegative irreducible tensor

Original Paper
  • 69 Downloads

Abstract

In this paper, we present a cubically convergent method for finding the largest eigenvalue of a nonnegative irreducible tensor. A cubically convergent method is used to solve an equivalent system of nonlinear equations which is transformed by the tensor eigenvalue problem. Due to particular structure of tensor, Chebyshev’s direction is added to the method with a few extra computation. Two rules are designed such that the descendant property of the search directions is ensured. The global convergence is proved by using the line search technique. Numerical results indicate that the proposed method is competitive and efficient on some test problems.

Keywords

Cubic convergence Tensor eigenvalue Nonnegative irreducible tensor Chebyshev’s method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Jiangsu Innovation Program for Graduate Education KYZZ160163; the National Natural Science Foundation of China under Grants 11471159,11571169,61661136001; and the Natural Science Foundation of Jiangsu Province under Grant BK20141409.

References

  1. 1.
    Chen, Z., Qi, L.Q., Yang, Q.Z., Yang, Y.N.: The solution methods for the largest eigenvalue (singular value) of nonnegative tensors and convergence analysis. Linear algebra Appl. 439, 3713–3733 (2013)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cui, C.F., Dai, Y.H., Nie, J.W.: All real eigenvalues of symmetric tensors. SIAM. J. Matrix Anal. Appl. 35, 1582–1601 (2004)CrossRefMATHGoogle Scholar
  3. 3.
    Chang, K.C., Pearson, K., Zhang, T.: Perron-Frobenius theorem for nonnegative tensors. Commu. Math. Sci. 6, 507–520 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chang, K.C., Pearson, K., Zhang, T.: Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors. SIAM. J. Matrix Anal. Appl. 32, 806–819 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Friedland, S., Gauber, S., Han, L.: Perron-Frobenius theorem for nonnegative multilinear forms and extensions. Linear Algebr. Appl. 438, 738–749 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Hu, S.L., Huang, Z.H., Qi, L.Q.: Strictly nonnegative tensors and nonnegative tensor partition. Sci. China Math. 57, 181–195 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Lim, L.H.: Singular values and eigenvalues of tensors, a variational approach Proceedings of the 1st IEEE International Workshop on Computational Advances of Multi-tensor Adaptive Processing, vol. 1, pp 129–132 (2005)Google Scholar
  8. 8.
    Liu, Y., Zhou, G.N., Ibrahim, F.: An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor. J. Comput. Appl. Math. 235, 286–292 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ng, M., Qi, L.Q., Zhou, G.: Finding the largest eigenvalue of a nonnegative tensor. SIAM J. Matrix Anal. Appl. 31, 1090–1099 (2009)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ni, Q., Qi, L.Q., Wang, F.: An eigenvalue method for testing the positive definiteness of a multivariate form. IEEE Trans. Automat. Control. 53, 1096–1107 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Ni, Q., Qi, L.Q.: A quadratically convergent algorithm for finding the largest eigenvalue of nonnegative homogeneous polynomial map. J. Glob. Optim. 61, 627–641 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Nocedal, J., Wright, S.J.: Numerical optimization. Science Press, Beijing (2006)MATHGoogle Scholar
  13. 13.
    Qi, L.Q., Teo, K.L.: Multivariate polynomial minimization and its application in signal processing. J. Global. Optim. 26, 419–433 (2003)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Qi, L.Q.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Qi, L.Q., Wang, Y., Wu, E.X.: D-eigenvalues of diffusion kurtosis tensors. J. Compu. Appl. Math. 221, 150–157 (2008)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Qi, L.Q., Yu, G., Wu, E.X.: Higher order positive semi-definite diffusion tensor imaging. SIAM J. Imaging Sci. 3, 416–433 (2010)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Schatz, M.D., Low, T.M., Van De Geijn, R.A., Kolda, T.G.: Exploiting symmetry in tensors for high performance: multiplication with symmetric tensors. SIAM J. Sci. Comput. 36(5), 453–479 (2014)Google Scholar
  18. 18.
    Werner, W.: Iterative solution of systems of nonlinear equations based upon quadratic approximations. Comp. Maths. with Appls. 12A(3), 331–343 (1986)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Yang, W.W., Ni, Q.: A new cubically convergent method for solving a system of nonlinear equations to submit to International Journal of Computer Mathematics (2016)Google Scholar
  20. 20.
    Yang, Y.N., Yang, Q.Z.: Further results for Perron-Frobenius Theorem for nonnegative tensors. SIAM J. Matrix Anal. Appl. 31, 2517–2530 (2010)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Yang, Y.N., Yang, Q.Z.: Further results for Perron-Frobenius Theorem for nonnegative tensors II. SIAM J. Matrix Anal. Appl. 32, 1236–1250 (2011)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Zhang, L., Qi, L.Q.: Linear convergence of an algorithm for computing the largest eigenvalue of a nonnegative tensor. Numer. Linear Algebra Appl. 19, 830–841 (2012)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.College of ScienceNUAANanjingPeople’s Republic of China

Personalised recommendations