Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Adaptive backstepping optimal control of a fractional-order chaotic magnetic-field electromechanical transducer


This paper develops an adaptive backstepping optimal control scheme for a fractional-order chaotic magnetic-field electromechanical transducer with the saturated control inputs. A dynamical analysis is used to check for abundant dynamical behaviors of the system by using phase diagrams and time histories under different excitations and fractional orders. A fuzzy wavelet neural network (FWNN) is utilized with an adaptive feedforward control input in order to estimate the unknown dynamical system. An auxiliary system is then developed to compensate the effects caused by the saturated control inputs, along with a tracking differentiator (TD) to realize the signal estimation associated with the fractional derivative. Taking FWNN, TD and auxiliary system into the framework of the fractional-order backstepping control, an adaptive feedforward controller is designed. In addition, we use a data-driven learning framework based on an actor critic network to solve the derived Hamilton–Jacobi–Bellman equation. The whole control policy, composing of an adaptive feedforward controller and an optimal feedback controller, not only guarantees the boundness of all signals and suppresses oscillations from the chaos and deadzone, but also makes the cost function to be smallest. Finally, the simulation results demonstrate the effectiveness of the presented scheme.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19


  1. 1.

    Ngueuteu, G.S.M., Woafo, P.: Dynamics and synchronization analysis of coupled fractional-order nonlinear electromechanical systems. Mech. Res. Commun. 46, 20–25 (2012)

  2. 2.

    Ngueuteu, G.S.M., Yamapi, R., Woafo, P.: Stability of synchronized network of chaotic electromechanical devices with nearest and all-to-all couplings. J. Sound Vib. 318, 1119–1138 (2008)

  3. 3.

    Luo, S., Li, S., Tajaddodianfar, F.: Chaos and adaptive control of the fractional-order magnetic-field electromechanical transducer. Int. J. Bifurc. Chaos 27, 1750203 (2018)

  4. 4.

    Ngueuteu, G.S.M., Yamapi, R., Woafo, P.: Effects of higher nonlinearity on the dynamics and synchronization of two coupled electromechanical devices. Commun. Nonlinear Sci. Numer. Simul. 13, 1213–1240 (2008)

  5. 5.

    Aghababa, M.P.: A fractional sliding mode for finite-time control scheme with application to stabilization of electrostatic and electromechanical transducers. Appl. Math. Model. 39, 6103–6113 (2015)

  6. 6.

    Pérez-Molina, M., Pérez-Polo, M.F.: Fold-Hopf bifurcation, steady state, self-oscillating and chaotic behavior in an electromechanical transducer with nonlinear control. Commun. Nonlinear Sci. Numer. Simul. 17, 5172–5188 (2012)

  7. 7.

    Wei, Y., Chen, Y., Wang, J., Wang, Y.: Analysis and description of the infinite-dimensional nature for nabla discrete fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 72, 472–492 (2019)

  8. 8.

    Liu, H., Li, S., Wang, H., Sun, Y.: Adaptive fuzzy control for a class of unknown fractional-order neural networks subject to input nonlinearities and dead-zones. Inf. Sci. 454–455, 30–45 (2018)

  9. 9.

    Sheng, D., Wei, Y., Cheng, S., Wang, Y.: Observer-based adaptive backstepping control for fractional order systems with input saturation. ISA Trans. 82, 18–29 (2018)

  10. 10.

    Liu, H., Pan, Y., Li, S., Chen, Y.: Adaptive fuzzy backstepping control of fractional-order nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 47, 2209–2217 (2017)

  11. 11.

    Wei, Y., Wang, J., Liu, T., Wang, Y.: Sufficient and necessary conditions for stabilizing singular fractional order systems with partially measurable state. J. Frankl. Inst. 356, 1975–1990 (2019)

  12. 12.

    Jafari, A.A., Mohammadi, S.M.A., Farsangi, M.M., Naseriyeh, M.H.: Observer-based fractional-order adaptive type-2 fuzzy backstepping control of uncertain nonlinear MIMO systems with unknown dead-zone. Nonlinear Dyn. 95, 3249–3274 (2019)

  13. 13.

    Tusset, A.M., Balthazar, J.M., Bassinello, D.G., Jr, B.R.P., Felix, J.L.P.: Statements on chaos control designs, including a fractional order dynamical system, applied to a “MEMS” comb-drive actuator. Nonlinear Dyn. 69, 1837–1857 (2012)

  14. 14.

    Aghababa, M.P.: A Lyapunov-based control scheme for robust stabilization of fractional chaotic systems. Nonlinear Dyn. 78, 2129–2140 (2014)

  15. 15.

    Ding, D., Qi, D., Peng, J., Wang, Q.: Asymptotic pseudo-state stabilization of commensurate fractional-order nonlinear systems with additive disturbance. Nonlinear Dyn. 81, 667–677 (2015)

  16. 16.

    Wei, Y., Chen, Y., Liang, S., Wang, Y.: A novel algorithm on adaptive backstepping control of fractional order systems. Neurocomputing 165, 395–402 (2015)

  17. 17.

    Heydarinejad, H., Delavari, H., Baleanu, D.: Fuzzy type-2 fractional backstepping blood glucose control based on sliding mode observer. Int. J. Dyn. Control 7, 341–354 (2018)

  18. 18.

    Modares, H., Lewis, F.L.: Optimal tracking control of nonlinear partially-unknown constrained-input systems using integral reinforcement learning. Automatica 50, 1780–1792 (2014)

  19. 19.

    Mohammadzadeh, A., Ghaemi, S.: Optimal synchronization of fractional-order chaotic systems subject to unknown fractional order, input nonlinearities and uncertain dynamic using type-2 fuzzy CMAC. Nonlinear Dyn. 88, 2993–3002 (2017)

  20. 20.

    Modares, H., Lewis, F.L., Jiang, Z.P.: H \(\infty \) tracking control of completely unknown continuous-time systems via off-policy reinforcement learning. IEEE Trans. Neural Netw. Learn. Syst. 26, 2550–2562 (2015)

  21. 21.

    Modares, H., Sistani, M.B.N., Lewis, F.L.: A policy iteration approach to online optimal control of continuous-time constrained-input systems. ISA Trans. 52, 611–621 (2013)

  22. 22.

    Sun, K., Li, Y., Tong, S.: Fuzzy adaptive output feedback optimal control design for strict-feedback nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 47, 33–44 (2017)

  23. 23.

    Sun, J., Liu, C.: Distributed fuzzy adaptive backstepping optimal control for nonlinear multi-missile guidance systems with input saturation. IEEE Trans. Fuzzy Syst. 27, 447–461 (2019)

  24. 24.

    Sun, J., Liu, C., Zhao, X.: Backstepping-based zero-sum differential games for missile-target interception systems with input and output constraints. IET Control Theor. Appl. 12, 243–253 (2017)

  25. 25.

    Liu, Y.-J., Gao, Y., Tong, S., Li, Y.: Fuzzy approximation-based adaptive backstepping optimal control for a class of nonlinear discrete-time systems with dead-zone. IEEE Trans. Fuzzy Syst. 24, 16–28 (2016)

  26. 26.

    Kanellopoulos, A., Vamvoudakis, K.G.: A moving target defense control framework for cyber-physical systems. IEEE Trans. Autom. Control (2019).

  27. 27.

    Vamvoudakis, K.G., Lewis, F.L.: Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem. Automatica 46, 878–888 (2010)

  28. 28.

    Vamvoudakis, K.G., Modares, H., Kiumarsi, B., Lewis, F.L.: Game theory-based control system algorithms with real-time reinforcement learning: How to solve multiplayer games online. IEEE Control Syst. Mag. 37, 33–52 (2017)

  29. 29.

    Vamvoudakis, K.G., Hespanha, J.P.: Cooperative q-learning for rejection of persistent adversarial inputs in networked linear quadratic systems. IEEE Trans. Autom. Control 63, 1018–1031 (2017)

  30. 30.

    Luo, S., Li, S., Tajaddodianfar, F., Hu, J.: Anti-oscillation and chaos control of the fractional-order brushless DC motor system via adaptive echo state networks. J. Frankl. Inst. 355, 6435–6453 (2018)

  31. 31.

    Wang, J., Zhou, Y.: A class of fractional evolution equations and optimal controls. Nonlinear Anal. Real World Appl. 12, 262–272 (2011)

  32. 32.

    Li, K., Peng, J., Jia, J.: Cauchy problems for fractional differential equations with Riemann–Liouville fractional derivatives. J. Funct. Anal. 263, 476–510 (2012)

  33. 33.

    Wei, Z., Li, Q., Che, J.: Initial value problems for fractional differential equations involving Riemann–Liouville sequential fractional derivative. J. Math. Anal. Appl. 367, 260–272 (2010)

  34. 34.

    Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34, 200–218 (2010)

  35. 35.

    Garrappa, R.: Grünwald–Letnikov operators for fractional relaxation in Havriliak–Negami models. Commun. Nonlinear Sci. Numer. Simul. 38, 178–191 (2016)

  36. 36.

    Ma, L., Li, C.: On finite part integrals and Hadamard-type fractional derivatives. J. Comput. Nonlinear Dyn. (2017).

  37. 37.

    Ma, L., Li, C.: On Hadamard fractional calculus. Fractals 25, 1750033 (2017)

  38. 38.

    Zhou, P., Bai, R.J., Zheng, J.M.: Stabilization of a fractional-order chaotic brushless DC motor via a single input. Nonlinear Dyn. 82, 519–525 (2015)

  39. 39.

    Sabouri, J., Effati, S., Pakdaman, M.: A neural network approach for solving a class of fractional optimal control problems. Neural Process. Lett. 45, 59–74 (2017)

  40. 40.

    Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19, 2951–2957 (2014)

  41. 41.

    Westerlund, S., Ekstam, L.: Capacitor theory. IEEE Trans. Dielect. Electr. Insul. 1, 826–839 (1994)

  42. 42.

    Jesus, I.S., Machado, J.T.: Development of fractional order capacitors based on electrolyte processes. Nonlinear Dyn. 56, 45–55 (2009)

  43. 43.

    John, D.A., Banerjee, S., Bohannan, G.W., Biswas, K.: Solid-state fractional capacitor using MWCNT-epoxy nanocomposite. Appl. Phys. Lett. 110, 163504 (2017)

  44. 44.

    Enelund, M., Lesieutre, G.A.: Time domain modeling of damping using anelastic displacement fields and fractional calculus. Int. J. Solids Struct. 36, 4447–4472 (1999)

  45. 45.

    Mohammadzadeh, A., Zhang, W.: Dynamic programming strategy based on a type-2 fuzzy wavelet neural network. Nonlinear Dyn. 95, 1661–1672 (2019)

  46. 46.

    Luo, S., Song, Y.: Chaos analysis-based adaptive backstepping control of the microelectromechanical resonators with constrained output and uncertain time delay. IEEE Trans. Ind. Electron. 63, 6217–6225 (2016)

  47. 47.

    Yang, Y., Tan, J., Yue, D.: Prescribed performance tracking control of a class of uncertain pure-feedback nonlinear systems with input saturation. IEEE Trans. Syst. Man Cybern. Syst. (2018).

Download references


This work is funded by the Key Project of National Natural Science Foundation of China (No.61933012), International Communication and Cooperation Program of National Natural Science Foundation of China(No. 61860206008), Young Scientific Talents of Education Department of Guizhou Province (No. [2018]111), Science and Technology Planning Project of Guizhou Province (No. [2018]5781), and Research Project of Introduction of Talents of Guizhou University (No. [2017]27).

Author information

Correspondence to Shaohua Luo.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Lewis, F.L., Song, Y. et al. Adaptive backstepping optimal control of a fractional-order chaotic magnetic-field electromechanical transducer. Nonlinear Dyn (2020).

Download citation


  • Chaotic oscillation
  • Fractional-order magnetic-field electromechanical transducer
  • Adaptive backstepping control
  • Optimal control
  • Fuzzy wavelet neural network