Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Parrondo’s paradox from classical to quantum: A review

  • 53 Accesses

Abstract

Two losing games can be combined in a certain manner to give a winning outcome—this is known as Parrondo’s paradox. Parrondo’s paradox has found its applications across different disciplines such as physics, biology and finance, amongst others. At the turn of the millennium, there has been immense attention on the quantum Parrondo’s games as classical games are simulated using quantum notation. This review paper traces the construction of quantum Parrondo’s games from classical capital-dependent, history-dependent and cooperative Parrondo’s games. Directions for future research will also be discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Parrondo, J.M., Español, P.: Criticism of Feynman’s analysis of the ratchet as an engine. Am. J. Phys. 64, 1125–1130 (1996)

  2. 2.

    Harmer, G.P., Abbott, D., Taylor, P.G., Parrondo, J.M.: Brownian ratchets and Parrondo’s games. Chaos Interdiscip. J. Nonlinear Sci. 11, 705–714 (2001)

  3. 3.

    Amengual, P., Allison, A., Toral, R., Abbott, D.: Discrete-time ratchets, the fokker-planck equation and Parrondo’s paradox. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460, 2269–2284 (2004)

  4. 4.

    Feynman, R.P., Leighton, R.B., Sands, M., Gottlieb, M.A., Leighton, R.: The Feynman Lectures on Physics Vol. 1, Chapter 46: Ratchet and Pawl, vol. 1. Addison-Wesley, Boston (1964)

  5. 5.

    Cheong, K.H., Koh, J.M., Jones, M.C.: Paradoxical survival Examining the Parrondo effect across biology. BioEssays 41, 1900027 (2019). https://doi.org/10.1002/bies.201900027

  6. 6.

    Reed, F.A.: Two-locus epistasis with sexually antagonistic selection: a genetic Parrondo’s paradox. Genetics 176, 1923–1929 (2007)

  7. 7.

    Cheong, K.H., Koh, J.M., Jones, M.C.: Multicellular survival as a consequence of Parrondo’s paradox. Proc. Natl. Acad. Sci. 115, E5258–E5259 (2018)

  8. 8.

    Koh, J.M., Xie, N.-G., Cheong, K.H.: Nomadic-colonial switching with stochastic noise: subsidence-recovery cycles and long-term growth. Nonlinear Dyn. 94, 1467–1477 (2018). https://doi.org/10.1007/s11071-018-4436-2

  9. 9.

    Tan, Z.-X., Cheong, K.H.: Periodic habitat destruction and migration can paradoxically enable sustainable territorial expansion. Nonlinear Dyn. 98, 1–13 (2019)

  10. 10.

    Cheong, K.H., Koh, J.M., Jones, M.C.: Do arctic hares play Parrondo’s games? Fluct. Noise Lett. 18, 1971001 (2019). https://doi.org/10.1142/S0219477519710019

  11. 11.

    Harmer, G.P., Abbott, D.: Game theory: losing strategies can win by Parrondo’s paradox. Nature 402, 864 (1999)

  12. 12.

    Arena, P., Fazzino, S., Fortuna, L., Maniscalco, P.: Game theory and non-linear dynamics: the Parrondo paradox case study. Chaos Solitons Fractals 17, 545–555 (2003)

  13. 13.

    Dinís, L., Parrondo, J.M.: Inefficiency of voting in Parrondo games. Phys. A Stat. Mech. Appl. 343, 701–711 (2004)

  14. 14.

    Ethier, S., Lee, J., et al.: Parrondo’s paradox via redistribution of wealth. Electron. J. Probab. 17, 1–21 (2012)

  15. 15.

    Toral, R.: Capital redistribution brings wealth by Parrondo’s paradox. Fluct. Noise Lett. 2, L305–L311 (2002)

  16. 16.

    Koh, J.M., Cheong, K.H.: Emergent preeminence of selfishness: an anomalous Parrondo perspective. Nonlinear Dyn 98, 943–951 (2019). https://doi.org/10.1007/s11071-019-05237-6

  17. 17.

    Koh, J.M., Cheong, K.H.: New doubly-anomalous Parrondo’s games suggest emergent sustainability and inequality. Nonlinear Dyn. 96, 257–266 (2019)

  18. 18.

    Harmer, G.P., Abbott, D., Taylor, P.G., Pearce, C.E., Parrondo, J.M.: Information entropy and Parrondo’s discrete-time ratchet. In: AIP Conference Proceedings, vol. 502, pp. 544–549 (AIP) (2000)

  19. 19.

    Pearce, C.E.: Entropy, markov information sources and Parrondo games. In: AIP Conference Proceedings, vol. 511, pp. 207–212 (AIP) (2000)

  20. 20.

    Osipovitch, D.C., Barratt, C., Schwartz, P.M.: Systems chemistry and Parrondo’s paradox: computational models of thermal cycling. New J. Chem. 33, 2022–2027 (2009)

  21. 21.

    Kocarev, L., Tasev, Z.: Lyapunov exponents, noise-induced synchronization, and Parrondo’s paradox. Phys. Rev. E 65, 046215 (2002)

  22. 22.

    Chang, C.-H., Tsong, T.Y.: Truncation and reset process on the dynamics of Parrondo’s games. Phys. Rev. E 67, 025101 (2003)

  23. 23.

    Allison, A., Abbott, D.: Control systems with stochastic feedback. Chaos Interdiscip. J. Nonlinear Sci. 11, 715–724 (2001)

  24. 24.

    Di Crescenzo, A.: A Parrondo paradox in reliability theory. Preprint arXiv:math/0602308 (2006)

  25. 25.

    Koh, J.M., Cheong, K.H.: Automated electron-optical system optimization through switching levenberg–marquardt algorithms. J. Electron Spectrosc. Relat. Phenom. 227, 31–39 (2018)

  26. 26.

    Cheong, K.H., Koh, J.M.: A hybrid genetic-Levenberg Marquardt algorithm for automated spectrometer design optimization. Ultramicroscopy 202, 100–106 (2019)

  27. 27.

    Gunn, L.J., Allison, A., Abbott, D.: Allison mixtures: where random digits obey thermodynamic principles. Int. J. Mod. Phys. Conf. Ser. 33, 1460360 (2014)

  28. 28.

    Soo, W.W.M., Cheong, K.H.: Parrondo’s paradox and complementary Parrondo processes. Phys. A Stat. Mech. Appl. 392, 17–26 (2013)

  29. 29.

    Soo, W.W.M., Cheong, K.H.: Occurrence of complementary processes in Parrondo’s paradox. Phys. A Stat. Mech. Appl. 412, 180–185 (2014)

  30. 30.

    Cheong, K.H., Soo, W.W.M.: Construction of novel stochastic matrices for analysis of Parrondo’s paradox. Phys. A Stat. Mech. Appl. 392, 4727–4738 (2013)

  31. 31.

    Cheong, K.H., Saakian, D.B., Zadourian, R.: Allison mixture and the two-envelope problem. Phys. Rev. E 96, 062303 (2017)

  32. 32.

    Ye, Y., Cheong, K.H., Cen, Y.-W., Xie, N.-G.: Effects of behavioral patterns and network topology structures on Parrondo’s paradox. Sci. Rep. 6, 37028 (2016). https://doi.org/10.1038/srep37028

  33. 33.

    Ye, Y., et al.: Passive network evolution promotes group welfare in complex networks. Chaos, Solitons & Fractals 130, 109464 (2020). https://doi.org/10.1016/j.chaos.2019.109464

  34. 34.

    Ye, Y., et al.: Ratcheting based on neighboring niches determines lifestyle. Nonlinear Dyn. 98, 1821–1830 (2019)

  35. 35.

    Cheong, K.H., Tan, Z.X., Ling, Y.H.: A time-based switching scheme for nomadic-colonial alternation under noisy conditions. Commun. Nonlinear Sci. Numer. Simul. 60, 107–114 (2018)

  36. 36.

    Cheong, K.H., Tan, Z.X., Xie, N.-G., Jones, M.C.: A paradoxical evolutionary mechanism in stochastically switching environments. Sci. Rep. 6, 34889 (2016). https://doi.org/10.1038/srep34889

  37. 37.

    Tan, Z.X., Cheong, K.H.: Nomadic-colonial life strategies enable paradoxical survival and growth despite habitat destruction. eLife 6, e21673 (2017)

  38. 38.

    Tan, Z.-X., Koh, J.M., Koonin, E.V., Cheong, K.H.: Predator dormancy is a stable adaptive strategy due to Parrondo’s paradox. Adv. Sci. (2019). https://doi.org/10.1002/advs.201901559

  39. 39.

    Harmer, G.P., Abbott, D.: A review of Parrondo’s paradox. Fluct. Noise Lett. 2, R71–R107 (2002)

  40. 40.

    Abbott, D.: Developments in Parrondo’s paradox. In: In, V., Longhini, P., Palacios, A. (eds.) Applications of Nonlinear Dynamics, pp. 307–321. Springer, Berlin, Heidelberg (2009)

  41. 41.

    Abbott, D.: Asymmetry and disorder: a decade of Parrondo’s paradox. Fluct. Noise Lett. 9, 129–156 (2010)

  42. 42.

    Cheong, K.H., et al.: Paradoxical simulations to enhance education in mathematics. IEEE Access 7, 17941–17950 (2019)

  43. 43.

    Osborne, T.: Advanced quantum theory, lecture 1 (2016). https://www.youtube.com/watch?v=Og13-bSF9kA. Acce-ssed 1 Oct 2019

  44. 44.

    Gomes, L.: Quantum computing: both here and not here. IEEE Spectr. 55, 42–47 (2018)

  45. 45.

    Neill, C., et al.: A blueprint for demonstrating quantum supremacy with superconducting qubits. Science 360, 195–199 (2018)

  46. 46.

    Arute, F., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019)

  47. 47.

    Flitney, A., Abbott, D.: Quantum models of Parrondo’s games. Phys. A Stat. Mech. Appl. 324, 152–156 (2003)

  48. 48.

    Bravyi, S., Gosset, D., Koenig, R.: Quantum advantage with shallow circuits. Science 362, 308–311 (2018)

  49. 49.

    Harmer, G.P., Abbott, D., et al.: Parrondo’s paradox. Stat. Sci. 14, 206–213 (1999)

  50. 50.

    Harmer, G.P., Abbott, D., Taylor, P.G., Parrondo, J.M.: Parrondo’s paradoxical games and the discrete Brownian ratchet. In: AIP Conference Proceedings, vol. 511, pp. 189–200. (AIP) (2000)

  51. 51.

    Meyer, D.A., Blumer, H.: Parrondo games as lattice gas automata. J. Stat. Phys. 107, 225–239 (2002)

  52. 52.

    Meyer, D.A.: Noisy quantum Parrondo games. In: Abbott, D., Shapiro, J.H., Yamamoto, Y. (eds.) Fluctuations and Noise in Photonics and Quantum Optics, vol. 5111, pp. 344–350. International Society for Optics and Photonics, Bellingham, WA, USA (2003)

  53. 53.

    Gawron, P., Miszczak, J.A.: Quantum implementation of Parrondo’s paradox. Fluct. Noise Lett. 5, L471–L478 (2005)

  54. 54.

    Košík, J., Miszczak, J., Bužek, V.: Quantum Parrondo’s game with random strategies. J. Mod. Opt. 54, 2275–2287 (2007)

  55. 55.

    Flitney, A.P.: Quantum Parrondo’s games using quantum walks. arXiv preprint arXiv:1209.2252 (2012)

  56. 56.

    Tregenna, B., Flanagan, W., Maile, R., Kendon, V.: Controlling discrete quantum walks: coins and initial states. New J. Phys. 5, 83 (2003)

  57. 57.

    Parrondo, J.M.R., Harmer, G.P., Abbott, D.: New paradoxical games based on brownian ratchets. Phys. Rev. Lett. 85, 5226–5229 (2000)

  58. 58.

    Harmer, G.P., Abbott, D., Parrondo, J.M.: Parrondo’s capital and history-dependent games. In: Nowak, A.S., Szajowski, K. (eds.) Advances in Dynamic Games, pp. 635–648. Springer Basel, Switzerland (2005)

  59. 59.

    Flitney, A.P., Ng, J., Abbott, D.: Quantum Parrondo’s games. Phys. A Stat. Mech. Appl. 314, 35–42 (2002)

  60. 60.

    Flitney, A.P., Abbott, D., Johnson, N.F.: Quantum walks with history dependence. J. Phys. A Math. Gen. 37, 7581 (2004)

  61. 61.

    Khan, S., Ramzan, M., Khan, M.: Quantum Parrondo’s games under decoherence. Int. J. Theor. Phys. 49, 31 (2010)

  62. 62.

    Bleiler, S.A., Khan, F.S.: Properly quantized history-dependent Parrondo games, markov processes, and multiplexing circuits. Phys. Lett. A 375, 1930–1943 (2011)

  63. 63.

    Bleiler, S.A.: A formalism for quantum games and an application. arXiv preprint arXiv:0808.1389 (2008)

  64. 64.

    Toral, R.: Cooperative Parrondo’s games. Fluct. Noise Lett. 1, L7–L12 (2001)

  65. 65.

    Mihailović, Z., Rajkoić, M.: One dimensional asynchronous cooperative Parrondo’s games. Fluct. Noise Lett. 3, L389–L398 (2003)

  66. 66.

    Mihailović, Z., Rajkoić, M.: Synchronous cooperative Parrondo’s games. Fluct. Noise Lett. 3, L399–L406 (2003)

  67. 67.

    Mihailović, Z., Rajković, M.: Cooperative Parrondo’s games on a two-dimensional lattice. Phys. A Stat. Mech. Appl. 365, 244–251 (2006)

  68. 68.

    Ethier, S., Lee, J.: Parrondo games with spatial dependence II. Fluct. Noise Lett. 11, 1250030 (2012)

  69. 69.

    Bulger, D., Freckleton, J., Twamley, J.: Position-dependent and cooperative quantum Parrondo walks. New J. Phys. 10, 093014 (2008)

  70. 70.

    Pawela, Ł., Sładkowski, J.: Cooperative quantum Parrondo’s games. Phys. D Nonlinear Phenom. 256, 51–57 (2013)

  71. 71.

    Si, T.: An optical model for implementing Parrondo’s game and designing stochastic game with long-term memory. Chaos Solitons Fractals 45, 1430–1436 (2012)

  72. 72.

    Chandrashekar, C., Banerjee, S.: Parrondo’s game using a discrete-time quantum walk. Phys. Lett. A 375, 1553–1558 (2011)

  73. 73.

    Li, M., Zhang, Y.-S., Guo, G.-C.: Quantum Parrondo’s games constructed by quantum random walks. Fluct. Noise Lett. 12, 1350024 (2013)

  74. 74.

    Rajendran, J., Benjamin, C.: Playing a true Parrondo’s game with a three-state coin on a quantum walk. EPL (Europhys. Lett.) 122, 40004 (2018)

  75. 75.

    Machida, T., Grünbaum, F.A.: Some limit laws for quantum walks with applications to a version of the Parrondo paradox. Quantum Inf. Process. 17, 241 (2018)

  76. 76.

    Li, R., Zhu, Y.-F., Guo, J.-Y., Wang, L., Xie, N.-G.: The quantum game interpretation for a special phenomenon of Parrondo’s paradox. Proc. Eng. 15, 3715–3722 (2011)

  77. 77.

    Chen, L., Li, C.-F., Gong, M., Guo, G.-C.: Quantum Parrondo game based on a quantum ratchet effect. Phys. A Stat. Mech. Appl. 389, 4071–4074 (2010)

  78. 78.

    Piotrowski, E.W., Sładkowski, J.: Quantum game theoretical frameworks in economics. In: Haven, E., Khrennikov, A. (eds.) The Palgrave Handbook of Quantum Models in Social Science, pp. 39–57. Springer, London, England, United Kingdom (2017)

  79. 79.

    Lee, C.F., Johnson, N.: Parrondo games and quantum algorithms. arXiv preprint arXiv:quant-ph/0203043 (2002)

  80. 80.

    Ng, J., Abbott, D.: Introduction to quantum games and a quantum Parrondo game. In: Křivan, V., Zaccour, G. (eds.) Advances in Dynamic Games, pp. 649–665. Springer Basel, Switzerland (2005)

  81. 81.

    Zhu, Y.-F., Xie, N.-G., Ye, Y., Peng, F.-R.: Quantum game interpretation for a special case of Parrondo’s paradox. Phys. A Stat. Mech. Appl. 390, 579–586 (2011)

  82. 82.

    Wang, L., Xie, N.-G., Zhu, Y.-F., Ye, Y., Meng, R.: Parity effect of the initial capital based on Parrondo’s games and the quantum interpretation. Phys. A Stat. Mech. Appl. 390, 4535–4542 (2011)

  83. 83.

    Piotrowski, E.W., Sladkowski, J.: The next stage: quantum game theory. arXiv preprint arXiv:quant-ph/0308027 (2003)

  84. 84.

    Flitney, A.P.: Aspects of quantum game theory. Ph.D. thesis, The University of Adelaide (2005)

  85. 85.

    Khan, F.S.: Quantum multiplexers, Parrondo games, and proper quantization. arXiv preprint arXiv:0906.0645 (2009)

  86. 86.

    Flitney, A.P., Abbott, D.: Quantum games with decoherence. J. Phys. A Math. Gen. 38, 449 (2004)

  87. 87.

    Banerjee, S., Chandrashekar, C., Pati, A.K.: Enhancement of geometric phase by frustration of decoherence: a Parrondo-like effect. Phys. Rev. A 87, 042119 (2013)

  88. 88.

    Lee, C.F., Johnson, N.F., Rodriguez, F., Quiroga, L.: Quantum coherence, correlated noise and Parrondo games. Fluct. Noise Lett. 2, L293–L298 (2002)

  89. 89.

    Dinis, L.: Optimal sequence for Parrondo games. Phys. Rev. E 77, 021124 (2008)

  90. 90.

    Rajendran, J., Benjamin, C.: Implementing Parrondo’s paradox with two-coin quantum walks. R. Soc. Open Sci. 5, 171599 (2018)

  91. 91.

    Xu, K., Huang, L., Yang, W.: Influence of entanglement in quantum Parrondo game. Int. J. Quantum Inf. 6, 1203–1212 (2008)

  92. 92.

    Tang, T.W., Allison, A., Abbott, D.: Investigation of chaotic switching strategies in Parrondo’s games. Fluct. Noise Lett. 4, L585–L596 (2004)

  93. 93.

    Canovas, J.S., Munoz, M.: Revisiting Parrondo’s paradox for the logistic family. Fluct. Noise Lett. 12, 1350015 (2013)

  94. 94.

    Buceta, J., Lindenberg, K., Parrondo, J.: Stationary and oscillatory spatial patterns induced by global periodic switching. Phys. Rev. Lett. 88, 024103 (2001)

  95. 95.

    Almeida, J., Peralta-Salas, D., Romera, M.: Can two chaotic systems give rise to order? Phys. D Nonlinear Phenom. 200, 124–132 (2005)

  96. 96.

    Sagués, F., Sancho, J.M., García-Ojalvo, J.: Spatiotemporal order out of noise. Rev. Mod. Phys. 79, 829 (2007)

  97. 97.

    Danca, M.-F., Fečkan, M., Romera, M.: Generalized form of Parrondo’s paradoxical game with applications to chaos control. Int. J. Bifurc. Chaos 24, 1450008 (2014)

  98. 98.

    Romera, M., Small, M., Danca, M.-F.: Deterministic and random synthesis of discrete chaos. Appl. Math. Comput. 192, 283–297 (2007)

  99. 99.

    Mendoza, S.A., Matt, E.W., Guimarães-Blandón, D.R., Peacock-López, E.: Parrondo’s paradox or chaos control in discrete two-dimensional dynamic systems. Chaos Solitons Fractals 106, 86–93 (2018)

Download references

Acknowledgements

This project was funded by the Singapore University of Technology and Design Start-up Research Grant (SRG SCI 2019 142).

Author information

Correspondence to Kang Hao Cheong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lai, J.W., Cheong, K.H. Parrondo’s paradox from classical to quantum: A review. Nonlinear Dyn (2020). https://doi.org/10.1007/s11071-020-05496-8

Download citation

Keywords

  • Quantum games
  • Parrondo’s paradox
  • Quantum decoherence