Spacecraft formation flying in the port-Hamiltonian framework

  • Najmeh Javanmardi
  • Abolfazl Yaghmaei
  • Mohammad Javad YazdanpanahEmail author
Original paper


The problem of controlling the relative position and velocity in multi-spacecraft formation flying in the planetary orbits is an enabling technology for current and future research. This paper proposes a family of tracking controllers for different dynamics of Spacecraft Formation Flying (SFF) in the framework of port-Hamiltonian (pH) systems through application of timed Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC). The leader–multi-follower architecture is used to address this problem. In this regard, first we model the spacecraft motion in the pH framework in the Earth Centered Inertial frame and then transform it to the Hill frame which is a special local coordinate system. By this technique, we may present a unified structure which encompasses linear/nonlinear dynamics, with/without perturbation. Then, using the timed IDA-PBC method and the contraction analysis, a new method for controlling a family of SFF dynamics is developed. The numerical simulations show the efficiency of the approach in two different cases of missions.


Spacecraft formation flying Port-Hamiltonian systems Trajectory tracking Timed IDA-PBC technique 



The authors would like to thank members of ACSL (Advanced Control Systems Laboratory) of University of Tehran, Mohammad Javanmardi and Maziar Sharbafi for the fruitful discussion on the subject.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.


  1. 1.
    Alfriend, K., Gurfil, P.: Spacecraft Formation Flying: Dynamics, Control and Navigation, ser. Astrodynamics Series. Elsevier, Amsterdam (2010)Google Scholar
  2. 2.
    Aoues, S., Cardoso-Ribeiro, F.L., Matignon, D., Alazard, D.: Modeling and control of a rotating flexible spacecraft: a port-hamiltonian approach. IEEE Trans. Control Syst. Technol. 27, 355–362 (2017) CrossRefGoogle Scholar
  3. 3.
    Chung, S.-J., Ahsun, U., Slotine, J.-J.E.: Application of synchronization to formation flying spacecraft: Lagrangian approach. J. Guid. Control Dyn. 32, 512–526 (2009)CrossRefGoogle Scholar
  4. 4.
    Curtis, H.: Orbital Mechanics: For Engineering Students, ser. Aerospace Engineering. Elsevier, Amsterdam (2015)Google Scholar
  5. 5.
    De Queiroz, M.S., Kapila, V., Yan, Q.: Adaptive nonlinear control of multiple spacecraft formation flying. J. Guid. Control Dyn. 23(3), 385–390 (2000)CrossRefGoogle Scholar
  6. 6.
    Donaire, A., Perez, T.: Dynamic positioning of marine craft using a port-Hamiltonian framework. Automatica 48(5), 851–856 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Donaire, A., Romero, J.G., Perez, T.: Trajectory tracking passivity-based control for marine vehicles subject to disturbances. J. Frankl. Inst. 354(5), 2167–2182 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Duindam, V., Macchelli, A., Stramigioli, S., Bruyninckx, H.: Modeling and Control of Complex Physical Systems: The Port-Hamiltonian Approach. Springer, Berlin (2009)CrossRefGoogle Scholar
  9. 9.
    Eyer, J.K.: A dynamics and control algorithm for low earth orbit precision formation flying satellites. Ph.D. dissertation, University of Toronto (2009)Google Scholar
  10. 10.
    Gui, H., Vukovich, G.: Dual-quaternion-based adaptive motion tracking of spacecraft with reduced control effort. Nonlinear Dyn. 83(1–2), 597–614 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hui, L., Li, J.: Terminal sliding mode control for spacecraft formation flying. IEEE Trans. Aerosp. Electron. Syst. 45(3), 835–846 (2009)CrossRefGoogle Scholar
  12. 12.
    Jian, M.: Formation flying of spacecrafts for monitoring and inspection. Master’s thesis, Lulea University of Technology (2009)Google Scholar
  13. 13.
    Lanczos, C.: The Variational Principles of Mechanics, ser. Dover Books on Physics. Dover Publications, New York (1986)Google Scholar
  14. 14.
    Lee, T., Leok, M., McClamroch, N.H.: Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds. Springer, Berlin (2017)zbMATHGoogle Scholar
  15. 15.
    Liu, G.-P., Zhang, S.: A survey on formation control of small satellites. Proc. IEEE 106(3), 440–457 (2018)CrossRefGoogle Scholar
  16. 16.
    Mitchell, J.W., Richardson, D.L.: Invariant manifold tracking for first-order nonlinear hill’s equations. J. Guid. Control Dyn. 26(4), 622–627 (2003)CrossRefGoogle Scholar
  17. 17.
    Ortega, R., Garca-Canseco, E.: Interconnection and damping assignment passivity-based control: a survey. Eur. J. Control 10(5), 432–450 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ortega, R., van der Schaft, A., Maschke, B.: Interconnection and damping assignment passivity-based control of port-controlled hamiltonian systems. Automatica 38(4), 585–596 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Reyes-Báez, R., van der Schaft, A., Jayawardhana, B., Donaire, A., Pérez, T.: Tracking control of marine craft in the port-hamiltonian framework: a virtual differential passivity approach. In: 2019 18th European Control Conference (ECC), pp. 1636–1641. IEEE, 2019Google Scholar
  20. 20.
    Schweighart, S.A., Sedwick, R.J.: High-fidelity linearized J model for satellite formation flight. J. Guid. Control Dyn. 25(6), 1073–1080 (2002)CrossRefGoogle Scholar
  21. 21.
    Sherrill, R.: Dynamics and control of satellite relative motion in elliptic orbits using Lyapunov-Floquet theory. Ph.D. dissertation (2013)Google Scholar
  22. 22.
    Vaddi, S.S., Vadali, S.R., Alfriend, K.T.: Formation flying: accommodating nonlinearity and eccentricity perturbations. J. Guid. Control Dyn. 26(2), 214–223 (2003)CrossRefGoogle Scholar
  23. 23.
    van der Schaft, A., Jeltsema, D., et al.: Port-hamiltonian systems theory: an introductory overview. Found. Trends® Syst. Control 1(2–3), 173–378 (2014)CrossRefGoogle Scholar
  24. 24.
    Vos, E., Scherpen, J.M., van der Schaft, A.J.: Equal distribution of satellite constellations on circular target orbits. Automatica 50(10), 2641–2647 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wang, D., Wu, B., Poh, E.K.: Satellite Formation Flying: Relative Dynamics, Formation Design, Fuel Optimal Maneuvers and Formation Maintenance, vol. 87. Springer, Berlin (2016)Google Scholar
  26. 26.
    Xia, K., Huo, W.: Robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with uncertainties. Nonlinear Dyn. 84(3), 1683–1695 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Yaghmaei, A., Yazdanpanah, M.J.: Trajectory tracking for a class of contractive port hamiltonian systems. Automatica 83, 331–336 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhao, L., Jia, Y.: Decentralized adaptive attitude synchronization control for spacecraft formation using nonsingular fast terminal sliding mode. Nonlinear Dyn. 78(4), 2779–2794 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringUniversity of TehranTehranIslamic Republic of Iran
  2. 2.Control and Intelligent Processing Center of Excellence, School of Electrical and Computer EngineeringUniversity of TehranTehranIslamic Republic of Iran

Personalised recommendations