Colour light field image encryption based on DNA sequences and chaotic systems

  • Wenying Wen
  • Kangkang Wei
  • Yushu ZhangEmail author
  • Yuming Fang
  • Ming Li
Original paper


The light field image (LFI) information includes the intensity of the collected object and the direction of the light through recording. An LFI with a 4-D scene representation includes a 2-D spatial domain and a 2-D angular domain, which is completely different than general natural images. To date, the encryption of natural images has been widely studied, while the encryption design of the LFI is missing. This work proposes an encryption scheme for colour LFI based on DNA sequences and chaotic systems. First, we employ an angular domain plane to represent the multi-view image of the LFI and then obtain a sub-view image in the spatial domain. For the given sub-view image and the random matrix, we apply a block processing method to divide multiple sub-blocks. Then, the DNA sequence and the chaotic system are used to encrypt the sub-view image. Moreover, considering the relationship between two planes, we apply the Arnold transform for all the sub-view images to realize the final encryption. Through three statistical analyses, three resistance attack analyses and two key analyses, experimental results show that the proposed scheme can be applicable, reliable, and secure enough.


Light field Image encryption DNA sequence Chaotic system 



This work was supported by the National Natural Science Foundation of China (Grant nos. 61961022, 61822109, 61571212), the Chongqing Key Laboratory of Mobile Communications Technology (Grant no. cqupt-mct-201901), and the Research Foundation of the Education Department of Jiangxi Province (Grant no. GJJ170322).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ng, R., Levoy, M., Bredif, M., Duval, G., Horowitz, M., Hanrahan, P.: Light field photography with a hand-held plenoptic camera, Computer Science Technical Report CSTR (2005)Google Scholar
  2. 2.
    Chen, J., Chau, L.P.: Light field compressed sensing over a disparity-aware dictionary. IEEE Trans. Circuits Syst. Video Technol. 99, 1–1 (2016)Google Scholar
  3. 3.
    Hu, L., Yuan, Y., Su, L., Huang, M., Li, Y.: Spectral resolution of light field spectral imaging system under diffraction model. Opt. Commun. 405, 421–425 (2017)CrossRefGoogle Scholar
  4. 4.
    Nagahara, H., Zhou, C., Watanabe, T., Ishiguro, H., Nayar, S.K.: Programmable aperture camera using LCoS. In: European Conference on Computer Vision, pp. 337–350 (2010)CrossRefGoogle Scholar
  5. 5.
    Chen, J., Hou, J., Ni, Y., Chau, L.P.: Accurate light field depth estimation with superpixel regularization over partially occluded regions. IEEE Trans. Image Process. 27(10), 4889–4900 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Jeon, H.-G., Park, J., Choe, G., Park, J., Bok, Y., Tai, Y.W., Kweon, I.: Depth from a light field image with learning-based matching costs. IEEE Trans. Pattern Anal. Mach. Intell. 99, 1–1 (2018)Google Scholar
  7. 7.
    Computer Graphics Laboratory, Stanford University: the (new) Stanford light field archive. (2008)
  8. 8.
    Lytro, Lytro cinema. (2016)
  9. 9.
    RayTrix, 3D light field camera technology. (2017)
  10. 10.
    Venkataraman, K., Lelescu, D., Duparr, J., Mcmahon, A., Molina, G.: PiCam: an ultra-thin high performance monolithic camera array. ACM Trans. Graph. Siggraph Asia 32(6), 2504–2507 (2013)Google Scholar
  11. 11.
    Wilburn, B., Joshi, N., Vaish, V., Levoy, M., Horowitz, M.: High-speed videography using a dense camera array. In: Computer Society Conference on Computer Vision and Pattern Recognition, pp. 294–301 (2004)Google Scholar
  12. 12.
    Fang, Y., Wei, K., Hou, J., Wen, W., Imamoglu, N.: Light filed image quality assessment by local and global features of epipolar plane image. In: 2018 IEEE Fourth International Conference on Multimedia Big Data (2018)Google Scholar
  13. 13.
    Chen, G.R., Mao, Y., Chui, C.K.: A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Soiltons Fractals 21(3), 749–761 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zhang, Y., Xiao, D., Shu, Y., Li, J.: A novel image encryption scheme based on a linear hyperbolic chaotic system of partial differential equations. Sig. Process. Image Commun. 28(3), 292–300 (2013)CrossRefGoogle Scholar
  15. 15.
    Chai, X., Chen, Y., Broyde, L.: A novel chaos-based image encryption algorithm using DNA sequence operations. Opt. Lasers Eng. 88, 197–213 (2017)CrossRefGoogle Scholar
  16. 16.
    Chen, J., Zhu, Z., Zhang, L., Zhang, Y., Yang, B.: Exploiting self-adaptive permutation-diffusion and DNA random encoding for secure and efficient image encryption. Sig. Process. 142, 340–353 (2018)CrossRefGoogle Scholar
  17. 17.
    Chen, J., Bao, N., Zhang, L.Y., Zhu, Z.: Optical information authentication using optical encryption and sparsity constraint. Opt. Lasers Eng. 107, 352–363 (2018)CrossRefGoogle Scholar
  18. 18.
    Zhou, N., Wang, Y., Gong, L.: Novel optical image encryption scheme based on fractional Mellin transform. Opt. Commun. 284(13), 3234–3242 (2011)CrossRefGoogle Scholar
  19. 19.
    Zhang, Y., Zhou, J., Chen, F., Zhang, L.Y., Xiao, D., Chen, B., Liao, X.: A block compressive sensing based scalable encryption framework for protecting significant image regions. Int. J. Bifurcat. Chaos (2016). CrossRefzbMATHGoogle Scholar
  20. 20.
    Zhou, N., Zhang, A., Zheng, F., Gong, L.: Novel image compression encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing. Opt. Laser Technol. 62, 152–160 (2014)CrossRefGoogle Scholar
  21. 21.
    Hua, Z., Jin, F., Xu, B., Huang, H.: 2D Logistic-Sine-coupling map for image encryption. Sig. Process. 149, 148–161 (2018)CrossRefGoogle Scholar
  22. 22.
    Hua, Z., Zhou, Y., Huang, H.: Cosine-transform-based chaotic system for image encryption. Inf. Sci. 480, 403–419 (2018)CrossRefGoogle Scholar
  23. 23.
    Zhang, Y., Xiao, D., Wen, W., Wong, K.W.: On the security of symmetric ciphers based on DNA coding. Inf. Sci. 289, 254–261 (2014)CrossRefGoogle Scholar
  24. 24.
    Zhang, Y., Xiao, D.: Double optical image encryption using discrete Chirikov standard map and chaos-based fractional random transform. Opt. Lasers Eng. 51(4), 472–480 (2013)CrossRefGoogle Scholar
  25. 25.
    Zhang, Y., Zhou, J., Chen, F., Zhang, L.Y., Wong, K.W., He, X., Xiao, D.: Embedding cryptographic features in compressive sensing. Neurocomputing 205, 472–480 (2016)CrossRefGoogle Scholar
  26. 26.
    You, S., Lu, Y., Zhang, W., Yang, B., Peng, R., Zhuang, S.: Micro-lens array based 3-D color image encryption using the combination of gravity model and Arnold transform. Opt. Commun. 355, 419–426 (2015)CrossRefGoogle Scholar
  27. 27.
    Chen, W., Chen, X., Sheppard, C.J.: Optical image encryption based on phase retrieval combined with three dimensional particle-like distribution. J. Opt. (2012). CrossRefGoogle Scholar
  28. 28.
    Chen, W., Chen, X.: Space-based optical image encryption. Opt. Express 18, 27095–27104 (2010)CrossRefGoogle Scholar
  29. 29.
    Taguchi, Y., Agrawal, A., Ramalingam, S., Veerarahavan, A.: Axial light field for curved mirrors: reflect your perspective, widen your view. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 499–506 (2010)Google Scholar
  30. 30.
    Watson, J.D., Crick, F.H.C.: A structure for deoxyribose nucleic acid. Nature 171(4356), 737–738 (1953)CrossRefGoogle Scholar
  31. 31.
    Adhikarla, V.K., Vinkler, M., Sumin, D., Mantiuk, R., Myszkowski, K., Seidel, H.-P., Didyk, P.: Towards a quality metric for dense light fields. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3720–3729 (2017)Google Scholar
  32. 32.
    Kim, C., Zimmer, H., Pritch, Y., Sorkine-Hornung, A., Gross, M.: Scene reconstruction from high spatio-angualr resolution light fields. ACM Trans. Graph. 32(4), 73:1–73:12 (2013)zbMATHGoogle Scholar
  33. 33.
    Akin, A., Cogal, O., Seyid, K., Afshari, H., Schmid, A., Leblebici, Y.: Hemispherical multiple camera system for high resolution omni-directional light field imaging. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(2), 137–144 (2013)CrossRefGoogle Scholar
  34. 34.
    Atta, U., Sajjad, S.J., Tariq, S.: A novel scheme for image encryption using substitution box and chaotic system. Nonlinear Dyn. 91, 359–370 (2018)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ye, G., Wong, K.K.: An image encryption scheme based on time-delay and hyperchaotic system. Nonlinear Dyn. 71, 259–267 (2013)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Wei, X., Guo, L., Zhang, Q., Zhang, J., Lian, S.: A novel color image encryption algorithm based on DNA sequence operation and hyper-chaotic system. J. Syst. Softw. 85(2), 290–299 (2012)CrossRefGoogle Scholar
  37. 37.
    Zhang, Q., Wei, X.: A novel couple images encryption algorithm based on DNA subsequence operation and chaotic system. Opt. Int. J. Light Electron Opt. 124(23), 6276–6281 (2013)CrossRefGoogle Scholar
  38. 38.
    Guesmi, R., Farah, M.A.B., Kachouri, A., Samet, M.: A novel chaos-based image encryption using DNA sequence operation and Secure Hash Algorithm SHA-2. Nonlinear Dyn. 83(3), 1123–1136 (2016)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Wen, W., Zhang, Y., Fang, Y., Fang, Z.: Image salient regions encryption for generating visually meaningful ciphertext image. Neural Comput. Appl. 29(3), 653–663 (2018)CrossRefGoogle Scholar
  40. 40.
    Liu, L., Zhang, Q., Wei, X.: A RGB image encryption algorithm based on DNA encoding and chaos map. Comput. Electr. Eng. 38(5), 1240–1248 (2012)CrossRefGoogle Scholar
  41. 41.
    Zhang, Y., Xiang, Y., Zhang, L.Y., Rong, Y., Guo, S.: Secure wireless communications based on compressive sensing: a survey. IEEE Commun. Surv. Tutor. 21(2), 1093–1111 (2019)CrossRefGoogle Scholar
  42. 42.
    Ye, G., Huang, X.: An efficient symmetric image encryption algorithm based on an intertwining logistic map. Neurocomputing 251, 45–53 (2017)CrossRefGoogle Scholar
  43. 43.
    Hua, Z., Yi, S., Zhou, Y., Li, C., Wu, Y.: Designing hyperchaotic Cat maps with any desired number of positive Lyapunov exponents. IEEE Trans. Cybern. 48(2), 463–473 (2018)CrossRefGoogle Scholar
  44. 44.
    Zhang, Q., Guo, L., Wei, X.: Image encryption using DNA addition combing with chaotic maps. Math. Comput. Model. 52(11), 2028–2035 (2010)CrossRefGoogle Scholar
  45. 45.
    Wen, W., Zhang, Y., Fang, Z., Chen, J.: Infrared target-based selective encryption by chaotic maps. Opt. Commun. 341, 131–139 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Cyber SecurityGansu University of Political Science and LawLanzhouChina
  2. 2.School of Communication and Information EngineeringChongqing University of Posts and TelecommunicationsChongqingChina
  3. 3.School of Information TechnologyJiangxi University of Finance and EconomicsNanchangChina
  4. 4.College of Computer and Information EngineeringHenan Normal UniversityXinxiangChina

Personalised recommendations