On the efficacy of charging a battery using a chaotic energy harvester

  • Mohammed F. DaqaqEmail author
  • Rafael S. Crespo
  • Sohmyung Ha
Original paper


Introduction of stiffness nonlinearities to broaden the frequency bandwidth of vibratory energy harvesters has the adverse influence of complicating the response behavior of the harvester. As such, unlike linear energy harvesters, for which direct performance metrics can be easily developed, it is not always easy to develop metrics to assess the performance of nonlinear energy harvesters. One particular issue arises when the harvester operates in its chaotic regime resulting in an unpredictable response, under which the harvester’s performance is hard to assess. In this paper, we present a statistical technique to estimate the charging time of a battery being charged by a chaotic vibratory input. The proposed approach, which accounts for the presence of a rectifier circuit, a buck converter, and the dependence of the battery voltage on the state of charge, only requires the knowledge of the probability density function of the open-circuit voltage of the harvester. Using the proposed technique, it is also possible to obtain the optimal duty cycle of the buck converter. Results of the proposed methodology were compared to numerical data generated using MATLAB’s Simscape toolbox demonstrating excellent agreement. Not only does the proposed technique provide a valuable tool to assess performance of a chaotic energy harvester, but it can also be easily applied to other chaotic and random energy sources.


Chaos Energy harvesting Battery Buck converter Charging time 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Wu, W., Chen, Y., Lee, B., He, J., Peng, Y.: Tunable resonant frequency power harvesting devices. In: Proceedings of Smart Structures and Materials Conference, SPIE, p. 61690A. San Diego, CA (2006)Google Scholar
  2. 2.
    Challa, V., Prasad, M., Shi, Y., Fisher, F.: A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater. Struct. 75, 1–10 (2008)Google Scholar
  3. 3.
    Shahruz, S.M.: Design of mechanical band-pass filters for energy scavenging. J. Sound Vib. 292, 987–998 (2006)CrossRefGoogle Scholar
  4. 4.
    Shahruz, S.M.: Limits of performance of mechanical band-pass filters used in energy harvesting. J. Sound Vib. 294, 449–461 (2006)CrossRefGoogle Scholar
  5. 5.
    Baker, J., Roundy, S., Wright, P.: Alternative geometries for increasing power density in vibration energy scavenging for wireless sensors. In: Proceedings of the Third International Energy Conversion Conference, pp. 959–970. San Francisco, CA (2005)Google Scholar
  6. 6.
    Rastegar, J., Pereira, C., Nguyen, H.L.: Piezoelectric-based power sources for harvesting energy from platforms with low frequency vibrations. In: Proceedings of Smart Structures and Materials Conference, SPIE, pp. 617101. San Diego, CA (2006)Google Scholar
  7. 7.
    Jung, J.H., Lee, M., Hong, J.-I., Ding, Y., Chen, C.-Y., Chou, L.-J., Wang, Z.L.: Lead-free \({\text{ NaNbO }}_3\) nanowires for a high output piezoelectric nanogenerator. ACS Nano 5, 10041–10046 (2011)CrossRefGoogle Scholar
  8. 8.
    Saito, Y., Takao, H.: High performance lead-free piezoelectric ceramics in the (K, Na)\({\text{ NbO }}_3\)-\({\text{ LiTaO }}_3\) solid solution system. Ferroelectrics 338, 17–32 (2006)CrossRefGoogle Scholar
  9. 9.
    Ottman, G.K., Hofmann, H.F., Lesieutre, G.A.: Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Trans. Power Electron. 18, 696–703 (2003)CrossRefGoogle Scholar
  10. 10.
    Ramadass, Y.K., Chandrakasan, A.P.: An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. IEEE J. Solid-State Circuits 45, 189–204 (2010)CrossRefGoogle Scholar
  11. 11.
    Makihara, K., Onoda, J., Miyakawa, T.: Low energy dissipation electric circuit for energy harvesting. Smart Mater. Struct. 15, 1493–1498 (2006)CrossRefGoogle Scholar
  12. 12.
    Gammaitoni, L., Neri, I., Vocca, H.: Nonlinear oscillators for vibration energy harvesting. Appl. Phys. Lett. 94(16), 164102 (2009)CrossRefGoogle Scholar
  13. 13.
    Daqaq, M.F.: Response of uni-modal duffing type harvesters to random forced excitations. J. Sound Vib. 329, 3621–3631 (2010)CrossRefGoogle Scholar
  14. 14.
    Daqaq, M.F.: Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise. J. Sound Vib. 330, 2554–2564 (2011)CrossRefGoogle Scholar
  15. 15.
    Nguyen, D.S., Halvorsen, E., Jensen, G.U., Vogl, A.: Fabrication and characterization of a wideband MEMS energy harvester utilizing nonlinear springs. J Micromech. Microeng. 20(12), 125009 (2010)CrossRefGoogle Scholar
  16. 16.
    Halvorsen, E.: Fundamental Issues in nonlinear wide-band vibration energy harvesting. Phys. Rev. E 87, 042129 (2013)CrossRefGoogle Scholar
  17. 17.
    Green, P.L., Worden, K., Atalla, K., Sims, N.D.: The benefits of duffing-type nonlinearities and electrical optimisation of a mono-stable energy harvester under white Gaussian excitations. J Sound Vib. 331(20), 4504–4517 (2012)CrossRefGoogle Scholar
  18. 18.
    Zhao, S., Erturk, A.: On the stochastic excitation of monostable and bistable electroelastic power generators: relative advantages and tradeoffs in a physical system. J. Appl. Phys. 102, 103902 (2013)Google Scholar
  19. 19.
    He, Q., Daqaq, M.F.: Load optimization of a nonlinear mono-stable duffing-type harvester operating in a white noise environment. In: Proceedings of the ASME: International Design Engineering Technical Conference and Computers and Information in Engineering Conference, IDETC/CIE 2013, p. 2013. Portland, OR (2013)Google Scholar
  20. 20.
    Daqaq, M.F.: On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations. Nonlinear Dyn. 69(3), 1063–1079 (2011) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Daqaq, M.F., Masana, R., Erturk, A., Quinn, D.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66, 040801 (2014)CrossRefGoogle Scholar
  22. 22.
    Burrow, S.G., Clare, L.R.: A resonant generator with non-linear compliance for energy harvesting in high vibrational environments. In: 2007 IEEE International Electric Machines Drives Conference, IEMDC ’07, vol. 1, pp. 715 –720 (2007)Google Scholar
  23. 23.
    Barton, D.A.W., Burrow, S.G., Clare, L.R.: Energy harvesting from vibrations with a nonlinear oscillator. ASME J. Vib. Acoust. 132(2), 021009 (2010)CrossRefGoogle Scholar
  24. 24.
    Stanton, S.C., McGehee, C.C., Mann, B.P.: Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Phys. D Nonlinear Phenom. 239, 640–653 (2010)CrossRefGoogle Scholar
  25. 25.
    Sebald, G., Kuwano, H., Guyomar, D., Ducharne, B.: Experimental duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater. Struct. 20(10), 102001 (2011)CrossRefGoogle Scholar
  26. 26.
    Harne, R.L., Thota, M., Wang, K.W.: Concise and high-fidelity predictive criteria for maximizing performance and robustness of bistable energy harvesters. Appl. Phys. Lett. 102, 053903 (2013) CrossRefGoogle Scholar
  27. 27.
    Masana, R., Daqaq, M.F.: Relative performance of a vibratory energy harvester in mono- and bi-stable potentials. J. Sound Vib. 330(24), 6036–6052 (2009)CrossRefGoogle Scholar
  28. 28.
    Masana, R., Daqaq, M.F.: Energy harvesting in the super-harmonic frequency region of a twin-well oscillator. J. Appl. Phys. 111(4), 044501 (2012)CrossRefGoogle Scholar
  29. 29.
    Joo, H.K., Sapsis, T.P.: Performance measures for single-degree-of-freedom energy harvesters under stochastic excitation. J. Sound Vib. 33, 4695–4710 (2014)CrossRefGoogle Scholar
  30. 30.
    Halvorsen, E.: Fundamental issues in nonlinear wideband-vibration energy harvesting. Phys. Rev. E 87, 042129 (2013)CrossRefGoogle Scholar
  31. 31.
    Langley, R.S.: A general mass law for broadband energy harvesting. J. Sound Vib. 333, 927–936 (2014)CrossRefGoogle Scholar
  32. 32.
    Langley, R.S.: Bounds on the vibrational energy that can be harvested from random base motion. J. Sound Vib. 339, 247–261 (2015)CrossRefGoogle Scholar
  33. 33.
    Petromichelakis, I., Psaros, A.S., Kougioumtzoglou, I.A.: Stochastic response determination and optimization of a class of nonlinear electromechanical energy harvesters: a Wiener path integral approach. Probab. Eng. Mech. 53, 116–125 (2018)CrossRefGoogle Scholar
  34. 34.
    Lund Instrument Engineering, Inc. PowerStream lithium polymer battery catalog. Accessed 5 Dec 2018
  35. 35.
    Nayfeh, A.H.: Nonlinear Dynamics. Wiley, New Jersey (1995)zbMATHGoogle Scholar
  36. 36.
    Anishchenko, V.S., Vadivasova, T.E., Strelkova, G.I., Okrokvertskhov, G.A.: Statistical properties of dynamical chaos. Math. Biosci. Eng. 1, 161–184 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Mohammed F. Daqaq
    • 1
    Email author
  • Rafael S. Crespo
    • 1
  • Sohmyung Ha
    • 2
  1. 1.Laboratory of Applied Nonlinear Dynamics (LAND), Division of EngineeringNew York University Abu Dhabi (NYUAD)Abu DhabiUAE
  2. 2.Division of EngineeringNew York University Abu Dhabi (NYUAD)Abu DhabiUAE

Personalised recommendations