Dromion-like structures and periodic wave solutions for variable-coefficients complex cubic–quintic Ginzburg–Landau equation influenced by higher-order effects and nonlinear gain
- 55 Downloads
Abstract
In this work, the variable-coefficients complex cubic–quintic Ginzburg–Landau equation (CCQGLE) influenced by higher-order effects and nonlinear gain is considered. Based on the asymmetric method, analytic one-soliton solution for the variable-coefficients CCQGLE is constructed for the first time. In addition, with some certain conditions, the periodic wave and dromion-like structures are derived. The results obtained may be helpful in understanding the solitons amplification and solitons management in optical fiber.
Keywords
Solitons Variable-coefficients Ginzburg–Landau equation Dromion-like structures Periodic wave solutions Asymmetric methodNotes
Acknowledgements
The work of Wenjun Liu was supported by the National Natural Science Foundation of China (NSFC) (11674036; 11875008); Beijing Youth Top-Notch Talent Support Program (2017000026833ZK08); State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University (2019GZKF03007).
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
References
- 1.Wazwaz, A.M.: A two-mode modified KdV equation with multiple soliton solutions. Appl. Math. Lett. 70, 1–6 (2017)MathSciNetCrossRefGoogle Scholar
- 2.Wazwaz, A.M.: Abundant solutions of various physical features for the (2+1)-dimensional modified KdV-Calogero–Bogoyavlenskii–Schiff equation. Nonlinear Dyn. 89, 1727–1732 (2017)MathSciNetCrossRefGoogle Scholar
- 3.Wazwaz, A.M., El-Tantawy, S.A.: Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota’s method. Nonlinear Dyn. 88, 3017–3021 (2017)MathSciNetCrossRefGoogle Scholar
- 4.Wazwaz, A.M.: Multiple soliton solutions and other exact solutions for a two-mode KdV equation. Math. Methods Appl. Sci. 40, 2277–2283 (2017)MathSciNetCrossRefGoogle Scholar
- 5.Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83(3), 1529–1534 (2016)MathSciNetCrossRefGoogle Scholar
- 6.Wazwaz, A.M.: A study on a two-wave mode Kadomtsev–Petviashvili equation: conditions for multiple soliton solutions to exist. Math. Methods Appl. Sci. 40, 4128–4133 (2017)MathSciNetCrossRefGoogle Scholar
- 7.Sun, W.R., Tian, B., et al.: Rogue matter waves in a Bose–Einstein condensate with the external potential. Eur. Phys. J. D 68, 1 (2014)CrossRefGoogle Scholar
- 8.Zhang, J.: Stability of attractive Bose–Einstein condensates. J. Stat. Phys. 101, 731 (2000)MathSciNetCrossRefGoogle Scholar
- 9.Roy, S., Bhadra, S.: Effect of two photon absorption on nonlinear pulse propagation in gain medium. Commun. Nonlinear Sci. Numer. Simul. 13(10), 2157–2166 (2008)CrossRefGoogle Scholar
- 10.Chen, Z.G., Segev, M., Christodoulides, D.N.: Optical spatial solitons: historical overview and recent advances. Rep. Prog. Phys. 75(8), 086401 (2012)CrossRefGoogle Scholar
- 11.Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Nonautonomous solitons in external potentials. Phys. Rev. Lett. 98(7), 074102 (2007)CrossRefGoogle Scholar
- 12.Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Nonautonomous matter-wave solitons near the Feshbach resonance. Phys. Rev. A 81(2), 023610 (2010)CrossRefGoogle Scholar
- 13.Konotop, V.V., Shchesnovich, V.S., Zezyulin, D.A.: Giant amplification of modes in parity-time symmetric waveguides. Phys. Lett. A 376(42–43), 2750–2753 (2012)CrossRefGoogle Scholar
- 14.Zuo, D.W., Zhang, G.F.: Exact solutions of the nonlocal Hirota equations. Appl. Math. Lett. 93, 66–71 (2019)MathSciNetCrossRefGoogle Scholar
- 15.Yu, F.J.: Inverse scattering solutions and dynamics for a nonlocal nonlinear Gross–Pitaevskii equation with PT-symmetric external potentials. Appl. Math. Lett. 92, 108–114 (2019)MathSciNetCrossRefGoogle Scholar
- 16.Xie, X.Y., Meng, G.Q.: Multi-dark soliton solutions for a coupled AB system in the geophysical flows. Appl. Math. Lett. 92, 201–207 (2019)MathSciNetCrossRefGoogle Scholar
- 17.Lan, Z.Z.: Multi-soliton solutions for a (2+1)-dimensional variable-coefficient nonlinear Schrödinger equation. Appl. Math. Lett. 86, 243–248 (2018)MathSciNetCrossRefGoogle Scholar
- 18.Li, M., Xu, T.: Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential. Phys. Rev. E 91(3), 033202 (2015)MathSciNetCrossRefGoogle Scholar
- 19.Lan, Z.Z.: Periodic, breather and rogue wave solutions for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev–Petviashvili equation in fluid dynamics. Appl. Math. Lett. 94, 126–132 (2019)MathSciNetCrossRefGoogle Scholar
- 20.Xu, T., Lan, S., et al.: Mixed soliton solutions of the defocusing nonlocal nonlinear Schrödinger equation. Physica D 390, 47–61 (2019)MathSciNetCrossRefGoogle Scholar
- 21.Akhmediev, N.N., Ankiewicz, A.: Solitons, Nonlinear PuIses and Beams, pp. 267–311. Chapman and Hall, London (1997)Google Scholar
- 22.Ping, T.J., Sheng, Z.G.: Exact solitary wave solutions of higher order complex Ginzburg–Landau equation. J. Optoelectron. Laser 16(1), 120–123 (2005)Google Scholar
- 23.Mollenauer, L.F., Smith, K.: Demonstration of soliton transmission over more than 4000 km in fiber with loss periodically compensated by Raman gain. Opt. Lett. 13(8), 675–677 (1988)CrossRefGoogle Scholar
- 24.Mollenauer, L.F., Smith, K.: Experimental observation of soliton interaction over long fiber paths: discovery of a long-range interaction. Opt. Lett. 14(22), 1284–1286 (1989)CrossRefGoogle Scholar
- 25.Haus, H.A., Wong, W.S.: Solitons in optical communications. Rev. Mod. Phys. 68(2), 423 (1996)CrossRefGoogle Scholar
- 26.Newell, A.C., Whitehead, J.A.: Finite bandwidth, finite amplitude convection. Fluid Mech. 38(2), 279–303 (1969)MathSciNetCrossRefGoogle Scholar
- 27.Liu, W.J., Pang, L.H., et al.: Dark solitons in \(\text{ WS }_{2}\) erbium-doped fiber lasers. Photonics Res. 4(3), 111–114 (2016)MathSciNetCrossRefGoogle Scholar
- 28.Huang, L.G., Pang, L.H., et al.: Analytic soliton solutions of cubic–quintic Ginzburg–Landau equation with variable nonlinearity and spectral filtering in fiber lasers. Ann. Phys. (Berlin) 528(6), 493–503 (2016)CrossRefGoogle Scholar
- 29.Akhmediev, N.N., Ankiewicz, A.: Dissipative Solitons, pp. 305–325. Springer, Berlin (2005)CrossRefGoogle Scholar
- 30.Turitsyn, S.K., Rozanov, N.N., et al.: Dissipative solitons in fiber lasers. Physics-Uspekhi 59(7), 642–668 (2016)CrossRefGoogle Scholar
- 31.Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65(65), 851–1112 (1993)CrossRefGoogle Scholar
- 32.Ping, T.J., Sheng, Z.G.: Exact solitary wave solutions of higher order complex Ginzburg–Landau equation. J. Optoelectron. Laser 16(1), 120–123 (2005)Google Scholar
- 33.Uzunov, I.M., Georgiev, Z.D., Arabadzhiev, T.N.: Transitions of stationary to pulsating solutions in the complex cubic–quintic Ginzburg–Landau equation under the influence of nonlinear gain and higher-order effects. Phys. Rev. E 97(5), 052215 (2018)MathSciNetCrossRefGoogle Scholar
- 34.Yan, Y.Y., Liu, W.J.: Stable transmission of solitons in the complex cubic–quintic Ginzburg–Landau equation with nonlinear gain and higher-order effects. Appl. Math. Lett. 98, 171–176 (2019)MathSciNetCrossRefGoogle Scholar
- 35.Huang, S.G., Li, J., et al.: Novel spectrum properties of the periodic pi-phase-shifted fiber Bragg grating. Opt. Commun. 285(6), 1113–1117 (2012)CrossRefGoogle Scholar
- 36.Huang, L.G., Liu, W.J., et al.: Soliton amplification in gain medium governed by Ginzburg–Landau equation. Nonlinear Dyn. 81, 1133–1141 (2015)MathSciNetCrossRefGoogle Scholar
- 37.Boiti, M., Leon, J.J.P., et al.: Scattering of localized solitons in the plane. Phys. Lett. A 132, 432 (1988)MathSciNetCrossRefGoogle Scholar
- 38.Liu, W.J., Zhang, Y.J., et al.: Dromion-like soliton interactions for nonlinear Schrödinger equation with variable coefficients in inhomogeneous optical fibers. Nonlinear Dyn. 96(1), 729–736 (2019)CrossRefGoogle Scholar
- 39.Liu, W.J., Tian, B., Lei, M.: Dromion-like structures in the variable coefficient nonlinear Schrödinger equation. Appl. Math. Lett. 30, 28–32 (2014)MathSciNetCrossRefGoogle Scholar
- 40.Wong, P., Pang, L.H., et al.: Novel asymmetric representation method for solving the higher-order Ginzburg–Landau equation. Sci. Rep. 6(1), 24613 (2016)CrossRefGoogle Scholar