Advertisement

Solitons and periodic waves for the (2 + 1)-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation in fluid mechanics

  • Gao-Fu Deng
  • Yi-Tian GaoEmail author
  • Jing-Jing Su
  • Cui-Cui Ding
  • Ting-Ting Jia
Original paper
  • 30 Downloads

Abstract

Fluid mechanics has the applications in a wide range of disciplines, such as oceanography, astrophysics, meteorology, and biomedical engineering. Under investigation in this paper is the (\(2+1\))-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation in fluid mechanics. Via the Pfaffian technique and certain constraint on the real constant \(\alpha \), the Nth-order Pfaffian solutions are derived. One- and two-soliton solutions are obtained via the Nth-order Pfaffian solutions. Based on the Hirota–Riemann method, one- and two-periodic wave solutions are constructed. With the help of the analytic and graphic analysis, we notice that: (1) of the one soliton, amplitude is irrelevant to \(\gamma \), a real constant coefficient in the equation, velocity along the x direction is independent of \(\gamma \), while velocity along the y direction is proportional to \(\gamma \); (2) one soliton keeps its amplitude and velocity invariant during the propagation and total amplitude of the two solitons in the interaction region is lower than that of any soliton; (3) one-periodic wave can be viewed as a superposition of the overlapping solitary waves, placed one period apart; (4) periodic behaviors for the two-periodic wave exist along the x and y directions, respectively; (5) under certain limiting conditions, one-periodic wave solutions approach to the one-soliton solutions and two-periodic wave solutions approach to the two-soliton solutions.

Keywords

Fluid mechanics (\(2+1\))-Dimensional generalized Caudrey-Dodd-Gibbon-Kotera-Sawada equation Solitons Periodic waves Pfaffian technique Hirota–Riemann method 

Notes

Acknowledgements

The authors express their sincere thanks to the members of their discussion group for their valuable suggestions. This work has been supported by the National Natural Science Foundation of China under Grant No. 11772017, and by the Fundamental Research Funds for the Central Universities under Grant No. 50100002016105010.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Nakayama, Y., Boucher, R.F.: Introduction to Fluid Mechanics. Butterworth-Heinemann, Oxford (1999)Google Scholar
  2. 2.
    Maris, H.J.: Note on the history effect in fluid mechanics. Am. J. Phys. 87, 643 (2019)CrossRefGoogle Scholar
  3. 3.
    Wazwaz, A.M.: Two new integrable fourth-order nonlinear equations: multiple soliton solutions and multiple complex soliton solutions. Nonlinear Dyn. 94, 2655–2663 (2018)CrossRefGoogle Scholar
  4. 4.
    Lan, Z.Z., Su, J.J.: Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system. Nonlinear Dyn. 96, 2535–2546 (2019)CrossRefGoogle Scholar
  5. 5.
    Gao, X.Y.: Looking at a nonlinear inhomogeneous optical fiber through the generalized higher-order variable-coefficient Hirota equation. Appl. Math. Lett. 73, 143–149 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Gao, X.Y.: Mathematical view with observational/experi-mental consideration on certain (2+1)-dimensional waves in the cosmic/laboratory dusty plasmas. Appl. Math. Lett. 91, 165–172 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Zhao, X.H., Tian, B., Guo, Y.J., Li, H.M.: Solitons interaction and integrability for a (2+1)-dimensional variable-coefficient Broer-Kaup system in water waves. Mod. Phys. Lett. B 32, 1750268 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Zhao, X.H., Tian, B., Xie, X.Y., Wu, X.Y., Sun, Y., Guo, Y.J.: Solitons, Backlund transformation and Lax pair for a (2+1)-dimensional Davey-Stewartson system on surface waves of finite depth. Wave. Random Complex 28, 356–366 (2018)CrossRefGoogle Scholar
  9. 9.
    Fogelson, A.L., Neeves, K.B.: Fluid mechanics of blood clot formation. Annu. Rev. Fluid Mech. 47, 377–403 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Wazwaz, A.M.: Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities. Nonlinear Dyn. 83, 591–596 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Johnson, R.S.: Application of the ideas and techniques of classical fluid mechanics to some problems in physical oceanography. Philos. Trans. R. Soc. Lond. A 376, 1 (2017)Google Scholar
  12. 12.
    Teyssier, R.: Grid-based hydrodynamics in astrophysical fluid flows. Annu. Rev. Astron. Astrophys. 53, 325–364 (2015)CrossRefGoogle Scholar
  13. 13.
    Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Yuan, Y.Q., Tian, B., Liu, L., Wu, X.Y., Sun, Y.: Solitons for the (2+1)-dimensional Konopelchenko-Dubrovsky equations. J. Math. Anal. Appl. 460, 476–486 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Yuan, Y.Q., Tian, B., Chai, H.P., Wu, X.Y., Du, Z.: Vector semirational rogue waves for a coupled nonlinear Schrödinger system in a birefringent fiber. Appl. Math. Lett. 87, 50–56 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Yin, H.M., Tian, B., Chai, J., Wu, X.Y.: Stochastic soliton solutions for the (2+1)-dimensional stochastic Broer-Kaup equations in a fluid or plasma. Appl. Math. Lett. 82, 126–131 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Lan, Z.Z., Hu, W.Q., Guo, B.L.: General propagation lattice Boltzmann model for a variable-coefficient compound KdV-Burgers equation. Appl. Math. Model. 73, 695–714 (2019)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Liu, L., Tian, B., Yuan, Y.Q., Du, Z.: Dark-bright solitons and semirational rogue waves for the coupled Sasa-Satsuma equations. Phys. Rev. E 97, 052217 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Xie, X.Y., Meng, G.Q.: Dark solitons for the (2+1)-dimensional Davey–Stewartson-like equations in the electrostatic wave packets. Nonlinear Dyn. 93, 779–783 (2018)CrossRefGoogle Scholar
  20. 20.
    Benjamin, T.B., Feir, J.E.: The disintegration of wave trains on deep water. Part 1. Theory. J. Fluid Mech. 27, 417–430 (1967)zbMATHCrossRefGoogle Scholar
  21. 21.
    Jackiw, R., Pi, S.Y.: Soliton solutions to the gauged nonlinear Schrödinger equation on the plane. Phys. Rev. Lett. 64, 2969 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Dai, C.Q., Wang, Y.Y., Fan, Y., Yu, D.G.: Reconstruction of stability for Gaussian spatial solitons in quintic-septimal nonlinear materials under PT-symmetric potentials. Nonlinear Dyn. 92, 1351–1358 (2018)CrossRefGoogle Scholar
  23. 23.
    Yin, H.M., Tian, B., Chai, J., Liu, L., Sun, Y.: Numerical solutions of a variable-coefficient nonlinear Schrödinger equation for an inhomogeneous optical fiber. Comput. Math. Appl. 76, 1827–1836 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Du, Z., Tian, B., Chai, H.P., Sun, Y., Zhao, X.H.: Rogue waves for the coupled variable-coefficient fourth-order nonlinear Schrödinger equations in an inhomogeneous optical fiber. Chaos Soliton. Fract. 109, 90–98 (2018)zbMATHCrossRefGoogle Scholar
  25. 25.
    Du, Z., Tian, B., Chai, H.P., Yuan, Y.Q.: Vector multi-rogue waves for the three-coupled fourth-order nonlinear Schrödinger equations in an alpha helical protein. Commun. Nonlinear Sci. Numer. Simulat. 67, 49–59 (2019)CrossRefGoogle Scholar
  26. 26.
    Zhang, C.R., Tian, B., Wu, X.Y., Yuan, Y.Q., Du, X.X.: Rogue waves and solitons of the coherently coupled nonlinear Schrödinger equations with the positive coherent coupling. Phys. Scr. 93, 095202 (2018)CrossRefGoogle Scholar
  27. 27.
    Wazwaz, A.M.: Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method. Chaos Solitons Fractals 12, 1549–1556 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Liu, J.G., Zhou, L., He, Y.: Multiple soliton solutions for the new (2+1)-dimensional Korteweg–de Vries equation by multiple exp-function method. Appl. Math. Lett. 80, 71–78 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Osman, M.S., Wazwaz, A.M.: An efficient algorithm to construct multi-soliton rational solutions of the (2+1)-dimensional KdV equation with variable coefficients. Appl. Math. Comput. 321, 282–289 (2018)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Zhang, C.R., Tian, B., Liu, L., Chai, H.P., Du, Z.: Vector breathers with the negatively coherent coupling in a weakly birefringent fiber. Wave Motion 84, 68–80 (2019)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Du, X.X., Tian, B., Wu, X.Y., Yin, H.M., Zhang, C.R.: Lie group analysis, analytic solutions and conservation laws of the (3 + 1)-dimensional Zakharov-Kuznetsov-Burgers equation in a collisionless magnetized electron-positron-ion plasma. Eur. Phys. J. Plus 133, 378 (2018)CrossRefGoogle Scholar
  32. 32.
    Ahmed, I., Seadawy, A.R., Lu, D.C.: Mixed lump-solitons, periodic lump and breather soliton solutions for (2+1)-dimensional extended Kadomtsev–Petviashvili dynamical equation. Int. J. Mod. Phys. B 33, 1950019 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Manukure, S., Zhou, Y., Ma, W.X.: Lump solutions to a (2+1)-dimensional extended KP equation. Comput. Math. Appl. 75, 2414–2419 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Sun, Y., Tian, B., Xie, X.Y., Chai, J., Yin, H.M.: Rogue waves and lump solitons for a (3+1)-dimensional B-type Kadomtsev–Petviashvili equation in fluid dynamics. Wave Random Complex 28, 544–552 (2018)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Qian, C., Rao, J.G., Liu, Y.B., He, J.S.: Rogue waves in the three-dimensional Kadomtsev–Petviashvili equation. Chin. Phys. Lett. 33, 110201 (2016)CrossRefGoogle Scholar
  36. 36.
    Hu, C.C., Tian, B., Wu, X.Y., Du, Z., Zhao, X.H.: Lump wave-soliton and rogue wave-soliton interactions for a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation in a fluid. Chin. J. Phys. 56, 2395–2403 (2018)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Hu, C.C., Tian, B., Wu, X.Y., Yuan, Y.Q., Du, Z.: Mixed lump-kink and rogue wave-kink solutions for a (3 + 1)-dimensional B-type Kadomtsev-Petviashvili equation in fluid mechanics. Eur. Phys. J. Plus 133, 40 (2018)CrossRefGoogle Scholar
  38. 38.
    Huang, Q.M., Gao, Y.T.: Wronskian, Pfaffian and periodic wave solutions for a (2+1)-dimensional extended shallow water wave equation. Nonlinear Dyn. 89, 2855–2866 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Arkadiev, V.A., Pogrebkov, A.K., Polivanov, M.C.: Inverse scattering transform method and soliton solutions for Davey–Stewartson II equation. Physica D 36, 189–197 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 915 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Khalique, C.M., Biswas, A.: A Lie symmetry approach to nonlinear Schrödinger’s equation with non-Kerr law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 14, 4033–4040 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Chen, S.S., Tian, B., Sun, Y., Zhang, C.R.: Generalized Darboux Transformations, Rogue Waves, and Modulation Instability for the Coherently Coupled Nonlinear Schrödinger Equations in Nonlinear Optics. Ann. Phys. (2019).  https://doi.org/10.1002/andp.201900011 CrossRefGoogle Scholar
  43. 43.
    Chen, S.S., Tian, B., Liu, L., Yuan, Y.Q., Zhang, C.R.: Conservation laws, binary Darboux transformations and solitons fora higher-order nonlinear Schrödinger system. Chaos, Solitons Fractals 118, 337–346 (2019)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Nakamura, A., Ohta, Y.: Bilinear, Pfaffian and Legendre function structuresof the Tomimatsu–Sato solutions of the Ernst equation in general relativity. J. Phys. Soc. Jpn. 60, 1835–1838 (1991)CrossRefGoogle Scholar
  45. 45.
    Kumar, S., Zhou, Q., Bhrawy, A.H., Zerrad, E., Biswas, A., Belic, M.: Optical solitons in birefringent fibers by Lie symmetry analysis. Rom. Rep. Phys. 68, 341–352 (2016)Google Scholar
  46. 46.
    Lan, Z.Z.: Periodic, breather and rogue wave solutions for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev–Petviashvili equation in fluid dynamics. Appl. Math. Lett. 94, 126–132 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Ohta, Y.: Pfaffian solution for coupled discrete nonlinear Schrödinger equation. Chaos Solitons Fractals 11, 91–95 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Wang, M., Tian, B., Sun, Y., Yin, H.M., Zhang, Z.: Mixed lump-stripe, bright rogue wave-stripe, dark rogue wave stripe and dark rogue wave solutions of a generalized Kadomtsev-Petviashvili equation in fluid mechanics. Chin. J. Phys. 60, 440–449 (2019)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Xie, X.Y., Meng, G.Q.: Collisions between the dark solitons for a nonlinear system in the geophysical fluid. Chaos, Solitons Fractals 107, 143–145 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Xie, X.Y., Meng, G.Q.: Dark solitons for a variable-coefficient AB system in the geophysical fluids or nonlinear optics. Eur. Phys. J. Plus 134, 359 (2019)CrossRefGoogle Scholar
  51. 51.
    Gilson, C.R.: Generalizing the KP hierarchies: Pfaffian hierarchies. Theor. Math. Phys. 133, 1663–1674 (2002)zbMATHCrossRefGoogle Scholar
  52. 52.
    Ma, P.L., Tian, S.F., Zou, L., Zhang, T.T.: The solitary waves, quasi-periodic waves and integrability of a generalized fifth-order Korteweg–de Vries equation. Wave Random Complex 29, 247–263 (2019)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Peng, W.Q., Tian, S.F., Zou, L., Zhang, T.T.: Characteristics of the solitary waves and lump waves with interaction phenomena in a (2+1)-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation. Nonlinear Dyn. 93, 1841–1851 (2018)zbMATHCrossRefGoogle Scholar
  54. 54.
    Meng, X.H.: The periodic solitary wave solutions for the (2 + 1)-dimensional fifth-order KdV equation. J. Appl. Math. Phys. 2, 639–643 (2014)CrossRefGoogle Scholar
  55. 55.
    Cao, C.W., Wu, Y.T., Geng, X.G.: On quasi-periodic solutions of the 2+1 dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada equation. Phys. Lett. A 256, 59–65 (1999)CrossRefGoogle Scholar
  56. 56.
    Fang, T., Gao, C.N., Wang, H., Wang, Y.H.: Lump-type solution, rogue wave, fusion and fission phenomena for the (2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada equation. Mod. Phys. Lett. B 33, 1950198 (2019)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Batwa, S., Ma, W.X.: Lump solutions to a (2+1)-dimensional fifth-order KdV-like equation. Adv. Math. Phys. 2018, 2062398 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Gupta, A.K., Ray, S.S.: Numerical treatment for the solution of fractional fifth-order Sawada–Kotera equation using second kind Chebyshev wavelet method. Appl. Math. Model. 39, 5121–5130 (2015)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Liu, C.F., Dai, Z.D.: Exact soliton solutions for the fifth-order Sawada–Kotera equation. Appl. Math. Comput. 206, 272–275 (2008)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Naher, H., Abdullah, F.A., Mohyud-Din, S.T.: Extended generalized Riccati equation mapping method for the fifth-order Sawada–Kotera equation. AIP Adv. 3, 052104 (2013)CrossRefGoogle Scholar
  61. 61.
    Guo, Y.F., Li, D.L., Wang, J.X.: The new exact solutions of the fifth-order Sawada–Kotera equation using three wave method. Appl. Math. Lett. 94, 232–237 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Hirota, R.: The Direct Method in Soliton Theory. Cambridge Univ. Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  63. 63.
    Xu, M.J., Tian, S.F., Tu, J.M., Ma, P.L., Zhang, T.T.: Quasi-periodic wave solutions with asymptotic analysis to the Saweda–Kotera–Kadomtsev–Petviashvili equation. Eur. Phys. J. Plus 130, 174 (2015)CrossRefGoogle Scholar
  64. 64.
    Furukawa, M., Tokuda, S.: Mechanism of stabilization of ballooning modes by toroidal rotation shear in tokamaks. Phys. Rev. Lett. 94, 175001 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Gao-Fu Deng
    • 1
  • Yi-Tian Gao
    • 1
    Email author
  • Jing-Jing Su
    • 1
  • Cui-Cui Ding
    • 1
  • Ting-Ting Jia
    • 1
  1. 1.Ministry-of-Education Key Laboratory of Fluid Mechanics and National Laboratory for Computational Fluid DynamicsBeijing University of Aeronautics and AstronauticsBeijingChina

Personalised recommendations