Advertisement

Tracking control of disturbed crowd dynamic system using unit sliding mode control and feedback linearization

  • Wei QinEmail author
  • Baotong Cui
  • Xuyang Lou
Original paper
  • 68 Downloads

Abstract

Based on the conservation law of mass, a distributed parameter system is constructed to describe the disturbed crowd dynamics. To deal with the non-directionality of crowd movement, the free flow speed is considered as a control variable, and the actuation system will guide pedestrians to change their speed and moving direction. Unit sliding mode control is used to eliminate disturbances and stabilize the crowd dynamic system to a reference density. Since the sliding mode control may cause chattering phenomenon, a second-order unit sliding mode controller is designed for the crowd dynamic system. Conditions for stability of the crowd dynamic system with the controllers are established. Finally, numerical examples illustrate the effectiveness of the proposed method.

Keywords

Disturbed crowd dynamic system Distributed parameter system Tracking control Sliding mode control Feedback linearization 

Notes

Acknowledgements

This research is supported by National Natural Science Foundation of China (Grant No. 61807016), China Postdoctoral Science Foundation (2018M642160) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX17_1460)

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Appert-Rolland, C., Degond, P., Motsch, S.: Two-way multi-lane traffic model for pedestrians in corridors. Netw. Heterog. Med. 6(3), 351–381 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bartolini, G., Ferrara, A., Usai, E.: Chattering avoidance by second-order sliding mode control. IEEE Trans. Autom. Control 43(2), 241–246 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chooramun, N., Lawrence, P.J., Galea, E.R.: An agent based evacuation model utilising hybrid space discretisation. Saf. Sci. 50(8), 1685–1694 (2012)CrossRefGoogle Scholar
  4. 4.
    Curtain, R.F., Zwart, H.: An Introduction to Infinite-Dimensional Linear Systems Theory. Springer, Berlin (1995)zbMATHCrossRefGoogle Scholar
  5. 5.
    Ding, S.: Second-order sliding mode control for nonlinear uncertain systems bounded by positive functions. IEEE Trans. Ind. Electron. 62(9), 5899–5909 (2015)CrossRefGoogle Scholar
  6. 6.
    Fridman, L., Levant, A.: Higher order sliding modes as a natural phenomenon in control theory. In: Garofalo, F., Glielmo, L. (eds.) Robust Control via Variable Structure and Lyapunov Techniques, pp. 107–133. Springer, Berlin (1996)zbMATHCrossRefGoogle Scholar
  7. 7.
    Gao, W., Wang, Y., Abdollah, H.: Discrete-time variable structure control systems. IEEE Trans. Ind. Electron. 42(2), 117–122 (1995)CrossRefGoogle Scholar
  8. 8.
    Bartolini, G., Pisano, A., Punta, E., Usai, E.: A survey of applications of second-order sliding mode control to mechanical systems. Int. J. Control 76(9–10), 875–892 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Gu, J., Wang, J.: Sliding mode control for n-coupled reaction–diffusion PDEs with boundary input disturbances. Int. J. Robust Nonlinear Control 29(5), 1437–1461 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Gu, J., Wang, J.: Sliding mode control of the orr-sommerfeld equation cascaded by both the squire equation and ODE in the presence of boundary disturbances. SIAM J. Control Optim. 56(2), 837–867 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Guo, B., Liu, J.: Sliding mode control and active disturbance rejection control to the stabilization of one-dimensional Schrödinger equation subject to boundary control matched disturbance. Int. J. Robust Nonlinear Control 24(16), 2194–2212 (2013)zbMATHCrossRefGoogle Scholar
  12. 12.
    Guo, R.Y., Huang, H.J., Wong, S.: Collection, spillback, and dissipation in pedestrian evacuation: a network-based method. Transp. Res. Part B Methodol. 45(3), 490–506 (2011)CrossRefGoogle Scholar
  13. 13.
    Gutman, S.: Uncertain dynamical systems—a lyapunov min-max approach. IEEE Trans. Autom. Control 24(3), 437–443 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Han, Y., Kao, Y., Gao, C.: Robust sliding mode control for uncertain discrete singular systems with time-varying delays and external disturbances. Autom. A J. IFAC Int. Fed. Autom. Control 75(4), 210–216 (2017)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Hänseler, F.S., Bierlaire, M., Farooq, B., Mühlematter, T.: A macroscopic loading model for time-varying pedestrian flows in public walking areas. Transp. Res. Part B Methodol. 69, 60–80 (2014)CrossRefGoogle Scholar
  16. 16.
    Helbing, D., Johansson, A.: Pedestrian, crowd and evacuation dynamics. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 697–716. Springer, New York (2011)Google Scholar
  17. 17.
    Huang, L., Wong, S., Zhang, M., Shu, C.W., Lam, W.H.: Revisiting hughes’ dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm. Transp. Res. Part B Methodol. 43(1), 127–141 (2009)CrossRefGoogle Scholar
  18. 18.
    Hughes, R.L.: A continuum theory for the flow of pedestrians. Transp. Res. Part B Methodol. 36(6), 507–535 (2002)CrossRefGoogle Scholar
  19. 19.
    Ivancevic, V.G., Reid, D.J., Aidman, E.V.: Crowd behavior dynamics: entropic path-integral model. Nonlinear Dyn. 59(1–2), 351–373 (2009)zbMATHGoogle Scholar
  20. 20.
    Kachroo, P., Özbay, K.M.: Feedback Ramp Metering in Intelligent Transportation Systems. Springer, Berlin (2011)Google Scholar
  21. 21.
    Karagiannis, D., Radisavljevic-Gajic, V.: Sliding mode boundary control of an Euler–Bernoulli beam subject to disturbances. IEEE Trans. Autom. Control 63(10), 3442–3448 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Karagiannis, D., Radisavljevic-Gajic, V.: Exponential stability for a class of boundary conditions on a Euler–Bernoulli beam subject to disturbances via boundary control. J. Sound Vib. 446, 387–411 (2019)CrossRefGoogle Scholar
  23. 23.
    Khalil, H.K.: Nonlinear Syst., 3rd edn. Prentice Hall, Upper Saddle River (2002)Google Scholar
  24. 24.
    Krstic, M.: Boundary Control of PDEs: A Course on Backstepping Design. Society for Industrial and Applied Mathematics, Philadelphia (2008)zbMATHCrossRefGoogle Scholar
  25. 25.
    Lachapelle, A., Wolfram, M.T.: On a mean field game approach modeling congestion and aversion in pedestrian crowds. Transp. Res. Part B Methodol. 45(10), 1572–1589 (2011)CrossRefGoogle Scholar
  26. 26.
    Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58(6), 1247–1263 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Lin, S., Zhang, W.: Chattering reduced sliding mode control for a class of chaotic systems. Nonlinear Dyn. 93(4), 2273–2282 (2018)zbMATHCrossRefGoogle Scholar
  28. 28.
    May, A.C.: Traffic Flow Fundamental. Prentice Hall, Englewood Cliffs (1990)Google Scholar
  29. 29.
    Moreno, J.A., Osorio, M.: A lyapunov approach to second-order sliding mode controllers and observers. In: 47th IEEE Conference on Decision and Control, pp. 2856–2861 (2008)Google Scholar
  30. 30.
    Orlov, Y.V.: Discontinuous unit feedback control of uncertain infinite-dimensional systems. IEEE Trans. Autom. Control 45(5), 834–843 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Orlov, Y.V.: Discontinuous Systems-Lyapunov Analysis and Robust Synthesis Under Uncertainty Conditions. Springer, Berlin (2009)zbMATHGoogle Scholar
  32. 32.
    Orlov, Y.V., Utkin, V.I.: Sliding mode control in indefinite-dimensional systems. Autom. A J. IFAC Int. Fed. Autom. Control 23(6), 753–757 (1987)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Orlov, Y.V., Utkin, V.I.: Unit sliding mode control in infinite dimensional systems. Appl. Math. Comput. Sci. 8(1), 7–20 (1998)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Pereira, L., Duczmal, L., Cruz, F.: Congested emergency evacuation of a population using a finite automata approach. Saf. Sci. 51(1), 267–272 (2013)CrossRefGoogle Scholar
  35. 35.
    Pinder, G.F.: Numerical Methods for Solving Partial Differential Equations: A Comprehensive Introduction for Scientists and Engineers. Wiley, Hoboken (2018)zbMATHGoogle Scholar
  36. 36.
    Pisano, A., Orlov, Y., Usai, E.: Tracking control of the uncertain heat and wave equation via power-fractional and sliding-mode techniques. SIAM J. Control Optim. 49(2), 363–382 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Qiang, S., Jia, B., Huang, Q., Rui, J.: Simulation of free boarding process using a cellular automaton model for passenger dynamics. Nonlinear Dyn. 91(1), 257–268 (2018)CrossRefGoogle Scholar
  38. 38.
    Qin, W., Zhuang, B., Cui, B.: Boundary control of the crowd evacuation system based on continuum model. Control Decis. 33(11), 2073–2079 (2018)Google Scholar
  39. 39.
    Shtessel, Y.B., Moreno, J.A., Fridman, L.M.: Twisting sliding mode control with adaptation: Lyapunov design, methodology and application. Autom. A J. IFAC Int. Fed. Autom. Control 75, 229–235 (2017)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Smith, R.A., Dickie, J.F.: Engineering for crowd safety. In: Proceedings of the International Conference on Engineering for Crowd Safety, London, UK, 17–18 March, 1993. Elsevier, Amsterdam, The Netherlands (1993)Google Scholar
  41. 41.
    Steele, J.M.: The Cauchy–Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities. Cambridge University Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  42. 42.
    Twarogowska, M., Goatin, P., Duvigneau, R.: Comparative study of macroscopic pedestrian models. Transp. Res. Proced. 2, 477–485 (2014)zbMATHCrossRefGoogle Scholar
  43. 43.
    Wadoo, S.A.: Sliding mode control of crowd dynamics. IEEE Trans. Control Syst. Technol. 21(3), 1008–1015 (2013)CrossRefGoogle Scholar
  44. 44.
    Wadoo, S.A., Kachroo, P.: Feedback control of crowd evacuation in one dimension. IEEE Trans. Intell. Transp. Syst. 11(1), 182–193 (2010)CrossRefGoogle Scholar
  45. 45.
    Wang, J., Liu, J., Ren, B., Chen, J.: Sliding mode control to stabilization of cascaded heat PDE–ODE systems subject to boundary control matched disturbance. Automatica 52, 23–34 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Wang, P., Yu, G., Wu, X., Wang, Y.: Linear and nonlinear stability analysis of an extended car-following model considering pedestrians on adjacent lane. Nonlinear Dyn. 88(1), 777–789 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things EngineeringJiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations