A new overhead crane emergency braking method with theoretical analysis and experimental verification

  • He ChenEmail author
  • Bokai Xuan
  • Peng Yang
  • Haiyong Chen
Original paper


Safety requirements are becoming increasingly important for various industrial production processes. Even though many facilities have been designed and used to ensure safety, the occurrence of some unexpected situations is still unavoidable. Therefore, suitable strategies should be designed in industry to deal with emergency situations. In this paper, we propose an emergency braking method for the commonly used overhead crane system to avoid accidents, such as collisions, when an unexpected situation occurs. Different from the typical industrial braking methods that stop the trolley immediately, the proposed method is designed considering payload swing suppression during the braking process, making the braking process safer. Additionally, the important payload safety limit is theoretically ensured. In particular, the detailed controller is designed by using the passivity property and the barrier Lyapunov function technique. Then, the convergence of the closed-loop system is proved using Lyapunov stability theory together with LaSalle’s invariance principle. Furthermore, various experiments are implemented on a self-built overhead crane test bed that validate the effectiveness of this method.


Overhead crane Emergency braking Lyapunov stability theory Swing suppression 



The authors would like to thank Prof. Yongchun Fang and Ning Sun from Nankai University for their professional suggestions and kind help.


This work was supported in part by the National Natural Science Foundation (NNSF) of China (61903120, 61873315), in part by the Natural Science Foundation of Hebei Province (F2018202078) and in part by the Young Talents Project in Hebei Province (210003).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Panagou, D., Kyriakopoulos, K.J.: Viability control for a class of underactuated systems. Automatica 49(1), 17–29 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Sun, N., Wu, Y., Chen, H., Fang, Y.: Antiswing cargo transportation of underactuated tower crane systems by a nonlinear controller embedded with an integral term. IEEE Trans. Autom. Sci. Eng. 16(3), 1387–1398 (2019)CrossRefGoogle Scholar
  3. 3.
    Wu, Y., Sun, N., Fang, Y., Liang, D.: An increased nonlinear coupling motion controller for underactuated multi-TORA systems: theoretical design and hardware experimentation. IEEE Trans. Syst. Man Cybern. Syst. 49(6), 1186–1193 (2019)CrossRefGoogle Scholar
  4. 4.
    Marantos, P., Bechlioulis, C.P., Kyriakopoulos, K.J.: Robust trajectory tracking control for small-scale unmanned helicopters with model uncertainties. IEEE Trans. Control Syst. Technol. 25(6), 2010–2021 (2017)CrossRefGoogle Scholar
  5. 5.
    Li, H., Yan, W.: Model predictive stabilization of constrained underactuated autonomous underwater vehicles with guaranteed feasibility and stability. IEEE/ASME Trans. Mechatron. 22(3), 1185–1194 (2017)CrossRefGoogle Scholar
  6. 6.
    He, W., Ouyang, Y., Hong, J.: Vibration control of a flexible robotic manipulator in the presence of input deadzone. IEEE Trans. Ind. Inf. 13(1), 48–59 (2017)CrossRefGoogle Scholar
  7. 7.
    Xi, Z., Hesketh, T.: Discrete time integral sliding mode control for overhead crane with uncertainties. IET Control Theory Appl 4(10), 2071–2081 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lee, L.-H., Huang, C.-H., Ku, S.-C., Yang, Z.-H., Chang, C.-Y.: Efficient visual feedback method to control a three-dimensional overhead crane. IEEE Trans. Ind. Electron. 61(8), 4073–4083 (2014)CrossRefGoogle Scholar
  9. 9.
    Zhang, M., Ma, X., Rong, X., Song, R., Tian, X., Li, Y.: A partially saturated adaptive learning controller for overhead cranes with payload hoisting/lowering and unknown parameters. Nonlinear Dyn. 89(3), 1779–1791 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Zhang, M., Ma, X., Rong, X., Tian, X., Li, Y.: Error tracking control for underactuated overhead cranes against arbitrary initial payload swing angles. Mech. Syst. Signal Process. 84(1), 268–285 (2017)CrossRefGoogle Scholar
  11. 11.
    Ngo, Q.H., Hong, K.-S.: Adaptive sliding mode control of container cranes. IET Control Theory Appl 6(5), 662–668 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sun, N., Yang, T., Chen, H., Fang, Y., Qian, Y.: Adaptive anti-swing and positioning control for 4-DOF rotary cranes subject to uncertain/unknown parameters with hardware experiments. IEEE Trans. Syst. Man Cybern. Syst. 49(7), 1309–1321 (2019)CrossRefGoogle Scholar
  13. 13.
    Böck, M., Kugi, A.: Real-time nonlinear model predictive path-following control of a laboratory tower crane. IEEE Trans. Control Syst. Technol. 22(4), 1461–1473 (2014)CrossRefGoogle Scholar
  14. 14.
    Chen, H., Fang, Y., Sun, N.: An adaptive tracking control method with swing suppression for 4-DOF tower crane systems. Mech. Syst. Signal Process. 123, 426–442 (2019)CrossRefGoogle Scholar
  15. 15.
    Carmona, I., Collado, J.: Control of a two wired hammerhead tower crane. Nonlinear Dyn. 84(4), 2137–2148 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sun, N., Fang, Y., Chen, H., Fu, Y., Lu, B.: Nonlinear stabilizing control for ship-mounted cranes with ship roll and heave movements: design, analysis, and experiments. IEEE Trans. Syst. Man Cybern. Syst. 48(10), 1781–1793 (2018)CrossRefGoogle Scholar
  17. 17.
    Yang, T., Sun, N., Chen, H., Fang, Y.: Neural network-based adaptive antiswing control of an underactuated ship-mounted crane with roll motions and input dead-zones. IEEE Trans. Neural. Netw. Learn. Syst. (2019). CrossRefGoogle Scholar
  18. 18.
    Ngo, Q.H., Hong, K.-S.: Sliding-mode antisway control of an offshore container crane. IEEE/ASME Trans. Mechatron. 17(2), 201–209 (2012)CrossRefGoogle Scholar
  19. 19.
    Li, H., Zhao, S., He, W., Lu, R.: Adaptive finite-time tracking control of full states constrained nonlinear systems with dead-zone. Automatica 100, 99–107 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Lee, H.-H.: Motion planning for three-dimensional overhead cranes with high-speed load hoisting. Int. J. Control 78(12), 875–886 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Hoang, N.Q., Lee, S.-G., Kim, H., Moon, S.-C.: Trajectory planning for overhead crane by trolley acceleration shaping. J. Mech. Sci. Technol. 28(7), 2879–2888 (2014)CrossRefGoogle Scholar
  22. 22.
    Wu, Z., Xia, X.: Optimal motion planning for overhead cranes. IET Control Theory Appl. 8(17), 1833–1842 (2014)CrossRefGoogle Scholar
  23. 23.
    Rams, H., Schöberl, M., Schlacher, K.: Optimal motion planning and energy-based control of a single mast stacker crane. IEEE Trans. Control Syst. Technol. 26(4), 1449–1457 (2018)CrossRefGoogle Scholar
  24. 24.
    Chen, H., Fang, Y., Sun, N.: Optimal trajectory planning and tracking control method for overhead cranes. IET Control Theory Appl. 10(6), 692–699 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Maghsoudi, M.J., Mohamed, Z., Sudin, S., Buyamin, S., Jaafar, H.I., Ahmad, S.M.: An improved input shaping design for an efficient sway control of a nonlinear 3D overhead crane with friction. Mech. Syst. Signal Process. 92, 364–378 (2017)CrossRefGoogle Scholar
  26. 26.
    Maghsoudi, M.J., Mohamed, Z., Tokhi, M.O., Husain, A.R., Abidin, M.S.Z.: Control of a gantry crane using input-shaping schemes with distributed delay. Trans. Inst. Meas. Control 39(3), 361–370 (2017)CrossRefGoogle Scholar
  27. 27.
    Blackburn, D., Singhose, W., Kitchen, J., Patrangenaru, V., Lawrence, J., Kamoi, T., Taura, A.: Command shaping for nonlinear crane dynamics. J. Vib. Control 16(4), 477–501 (2010)zbMATHCrossRefGoogle Scholar
  28. 28.
    Le, T.A., Lee, S.-G., Moon, S.-C.: Partial feedback linearization and sliding mode techniques for 2D crane control. Trans. Inst. Meas. Control 36(1), 78–87 (2014)CrossRefGoogle Scholar
  29. 29.
    Tuan, L.A., Lee, S.-G., Ko, D.H., Nho, L.C.: Combined control with sliding mode and partial feedback linearization for 3D overhead cranes. Int. J. Robust Nonlinear Control 24(18), 3372–3386 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Wu, X., He, X.: Partial feedback linearization control for 3-D underactuated overhead crane systems. ISA Trans. 65, 361–370 (2016)CrossRefGoogle Scholar
  31. 31.
    He, W., Zhang, S., Ge, S.Sam: Adaptive control of a flexible crane system with the boundary output constraint. IEEE Trans. Ind. Electron. 61(8), 4126–4133 (2014)CrossRefGoogle Scholar
  32. 32.
    Zhang, Z., Wu, Y., Huang, J.: Robust adaptive antiswing control of underactuated crane systems with two parallel payloads and rail length constraint. ISA Trans. 65, 275–283 (2016)CrossRefGoogle Scholar
  33. 33.
    Wu, T.-S., Karkoub, M., Wang, H., Chen, H.-S., Chen, T.-H.: Robust tracking control of MIMO underactuated nonlinear systems with dead-zone band and delayed uncertainty using an adaptive fuzzy control. IEEE Trans. Fuzzy Syst. 25(4), 905–918 (2017)CrossRefGoogle Scholar
  34. 34.
    Chwa, D.: Sliding-mode-control-based robust finite-time antisway tracking control of 3-D overhead cranes. IEEE Trans. Ind. Electron. 64(8), 6775–6784 (2017)CrossRefGoogle Scholar
  35. 35.
    Park, M.-S., Chwa, D., Eom, M.: Adaptive sliding-mode antisway control of uncertain overhead cranes with high-speed hoisting motion. IEEE Trans. Fuzzy Syst. 22(5), 1262–1271 (2014)CrossRefGoogle Scholar
  36. 36.
    Smoczek, J., Szpytko, J.: Particle swarm optimization-based multivariable generalized predictive control for an overhead crane. IEEE/ASME Trans. Mechatron. 22(1), 258–268 (2017)CrossRefGoogle Scholar
  37. 37.
    Wu, Z., Xia, X., Zhu, B.: Model predictive control for improving operational efficiency of overhead cranes. Nonlinear Dyn. 79(4), 2639–2657 (2015)CrossRefGoogle Scholar
  38. 38.
    Chen, H., Fang, Y., Sun, N.: A swing constraint guaranteed MPC algorithm for underactuated overhead cranes. IEEE/ASME Trans. Mechatron. 21(5), 2543–2555 (2016)CrossRefGoogle Scholar
  39. 39.
    Yu, J., Shi, P., Dong, W., Lin, C.: Adaptive fuzzy control of nonlinear systems with unknown dead zones based on command filtering. IEEE Trans. Fuzzy Syst. 26(1), 46–55 (2018)CrossRefGoogle Scholar
  40. 40.
    Yu, J., Shi, P., Dong, W., Lin, C.: Command filtering-based fuzzy control for nonlinear systems with saturation input. IEEE Trans. Cybern. 47(9), 2472–2479 (2017)CrossRefGoogle Scholar
  41. 41.
    Yu, J., Zhao, L., Yu, H., Lin, C., Dong, W.: Fuzzy finite-time command filtered control of nonlinear systems with input saturation. IEEE Trans. Cybern. 48(8), 2378–2387 (2018)CrossRefGoogle Scholar
  42. 42.
    Shi, P., Li, F., Wu, L., Lim, C.-C.: Neural network-based passive filtering for delayed neutral-type semi-Markovian jump systems. IEEE Trans. Neural Netw. Learn. Syst. 28(9), 2101–2114 (2017)MathSciNetGoogle Scholar
  43. 43.
    Zhou, Q., Zhao, S., Li, H., Lu, R., Wu, C.: Adaptive neural network tracking control for robotic manipulators with dead-zone. IEEE Trans. Neural Netw. Learn. Syst. (2018). CrossRefGoogle Scholar
  44. 44.
    Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509–4522 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Sun, Z., Bi, Y., Zhao, X., Sun, Z., Ying, C., Tan, S.: Type-2 fuzzy sliding mode anti-swing controller design and optimization for overhead crane. IEEE Access 6, 51931–51938 (2018)CrossRefGoogle Scholar
  46. 46.
    Ramli, L., Mohamed, Z., Jaafar, H.I.: A neural network-based input shaping for swing suppression of an overhead crane under payload hoisting and mass variations. Mech. Syst. Signal Process. 107, 484–501 (2018)CrossRefGoogle Scholar
  47. 47.
    Vaughan, J., Kim, D., Singhose, W.: Control of tower cranes with double-pendulum payload dynamics. IEEE Trans. Control Syst. Technol. 18(6), 1345–1358 (2010)Google Scholar
  48. 48.
    Sun, N., Wu, Y., Chen, H., Fang, Y.: An energy-optimal solution for transportation control of cranes with double pendulum dynamics: design and experiments. Mech. Syst. Signal Process. 102, 87–101 (2018)CrossRefGoogle Scholar
  49. 49.
    Sun, N., Yang, T., Fang, Y., Wu, Y., Chen, H.: Transportation control of double-pendulum cranes with a nonlinear quasi-PID scheme: design and experiments. IEEE Trans. Syst. Man Cybern. Syst. 49(7), 1408–1418 (2019)CrossRefGoogle Scholar
  50. 50.
    Zhang, M., Ma, X., Chai, H., Rong, X., Tian, X., Li, Y.: A novel online motion planning method for double-pendulum overhead cranes. Nonlinear Dyn. 85(2), 1079–1090 (2016)zbMATHCrossRefGoogle Scholar
  51. 51.
    Chen, H., Fang, Y., Sun, N.: A swing constrained time-optimal trajectory planning strategy for double pendulum crane systems. Nonlinear Dyn. 89(2), 1513–1524 (2017)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Masoud, Z., Alhazza, K., Abu-Nada, E., Majeed, M.: A hybrid command-shaper for double-pendulum overhead cranes. J. Vib. Control 20(1), 24–37 (2014)CrossRefGoogle Scholar
  53. 53.
    Coelingh, E., Eidehall, A., Bengtsson, M.: Collision warning with full auto brake and redestrian detection—a practical example of automatic emergency braking. In: Proceedings of 13th international IEEE annual conference on intelligent transportation systems, pp. 155–160. Madeira Island, Portugal (2010)Google Scholar
  54. 54.
    Fildes, B., Keall, M., Bos, N., Lie, A., Page, Y., Pastor, C., Pennisi, L., Rizzi, M., Thomas, P., Tingvall, C.: Effectiveness of low speed autonomous emergency braking in real-world rear-end crashes. Accid. Anal. Prev. 81, 24–29 (2015)CrossRefGoogle Scholar
  55. 55.
    Belmans, R., Busschots, F., Timmer, R.: Practical design considerations for braking problems in overhead crane drives. In: Proceedings of conference record of the 1993 IEEE industry applications conference twenty-eighth IAS annual meeting, pp. 473–479. Toronto (1993)Google Scholar
  56. 56.
    Li, C., Lee, C.-Y.: Fuzzy motion control of an auto-warehousing crane system. IEEE Trans. Ind. Electron. 48(5), 983–994 (2001)CrossRefGoogle Scholar
  57. 57.
    Ma, B., Fang, Y., Zhang, Y.: Switching-based emergency braking control for an overhead crane system. IET Control Theory Appl. 4(9), 1739–1747 (2010)CrossRefGoogle Scholar
  58. 58.
    Chen, H., Fang, Y., Sun, N.: A payload swing suppression guaranteed emergency braking method for overhead crane systems. J. Vib. Control 24(20), 4651–4660 (2018)CrossRefGoogle Scholar
  59. 59.
    Li, E., Liang, Z.-Z., Hou, Z.-G., Tian, M.: Energy-based balance control approach to the ball and beam system. Int. J. Control 82(6), 981–992 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Lévine, J.: Analysis and Control of Nonlinear Systems: A Flatness-Based Approach. Springer, Berlin Heidelberg (2009)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Artificial IntelligenceHebei University of TechnologyTianjinChina

Personalised recommendations