Advertisement

Nonlinear gain feedback adaptive DSC for a class of uncertain nonlinear systems with asymptotic output tracking

  • Jiacheng Song
  • Maode YanEmail author
  • Yongfeng Ju
  • Panpan Yang
Original paper
  • 48 Downloads

Abstract

This paper proposes an adaptive dynamic surface controller with nonlinear gain feedback for a class of uncertain nonlinear systems to achieve the asymptotic output tracking. A nonlinear filter is designed to eliminate the effects raised by the boundary layer error at each step in the dynamic surface control (DSC) procedure. Meanwhile, a new nonlinear gain function, which can regulate the control ability automatically, is designed to improve the dynamic performance of system. Then, an adaptive controller is explicitly designed to achieve the asymptotic output tracking. Moreover, a novel Lyapunov function is designed to analyze the stability of the proposed algorithm. The proposed DSC algorithm not only can avoid the inherent problem of “explosion of complexity” in the back-stepping procedure, but also can achieve the asymptotic output tracking and improve the dynamic performance. Some simulations are shown to demonstrate the effectiveness and advantages of the proposed controller.

Keywords

Dynamic surface control Asymptotic output tracking Nonlinear gain feedback Nonlinear system 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61803040), China Postdoctoral Science Foundation (No. 2018M643556), the Natural Science Basic Research Plan in Shaanxi Province of China (Nos. 2017JQ6060, 2018JQ6098) and the Fundamental Research Funds for the Central University of China(Nos. 300102328403, 300102328303, 310832163403).

Compliance with ethical standards

Conflicts of interest

The authors declared that they have no conflict of interest.

References

  1. 1.
    Tan, K.K., Huang, S.N., Lee, T.H.: Adaptive backstepping control for a class of nonlinear systems using neural network approximations. Int. J. Robust Nonlinear Control 14(7), 643 (2004)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Lin, X., Dong, H., Yao, X.: Tuning function-based adaptive backstepping fault-tolerant control for nonlinear systems with actuator faults and multiple disturbances. Nonlinear Dyn. 91(4), 2227 (2018)zbMATHGoogle Scholar
  3. 3.
    Bateman, A., Hull, J., Lin, Z.: A backstepping-based low-and-high gain design for marine vehicles. Int. J. Robust Nonlinear Control 19(4), 480 (2010)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Tong, S., Zhang, L., Li, Y.: Observed-based adaptive fuzzy decentralized tracking control for switched uncertain nonlinear large-scale systems with dead zones. IEEE Trans. Syst. Man Cybern. Syst. 46(1), 37 (2015)Google Scholar
  5. 5.
    Zhao, X., Shi, P., Zheng, X., Zhang, L.: Adaptive tracking control for switched stochastic nonlinear systems with unknown actuator dead-zone. Automatica 60(C), 193 (2015)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Swaroop, D., Hedrick, J.K., Yip, P.P., Gerdes, J.C.: Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom. Control 45(10), 1893 (2002)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Patrickyip, P., Karlhedrick, J.: Adaptive dynamic surface control: a simplified algorithm for adaptive backstepping control of nonlinear systems. Int. J. Control 71(5), 959 (1998)MathSciNetGoogle Scholar
  8. 8.
    He, N., Qian, G., Gutierrez, H., Jiang, C., Yang, Y., Bi, Y.: Robust adaptive dynamic surface control for hypersonic vehicles. Nonlinear Dyn. 93(3), 1109 (2018)zbMATHGoogle Scholar
  9. 9.
    Liu, Y.-H., Hu, X., Huang, L.: Adaptive asymptotic tracking of uncertain nonlinear systems with unknown hysteresis nonlinearity. In: 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC), IEEE, pp. 46–51 (2017)Google Scholar
  10. 10.
    Yoo, S.J., Jin, B.P., Choi, Y.H.: Decentralized adaptive stabilization of interconnected nonlinear systems with unknown non-symmetric dead-zone inputs. Automatica 45(2), 436 (2009)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Yoo, S.J., Jin, B.P., Choi, Y.H.: Adaptive dynamic surface control for stabilization of parametric strict-feedback nonlinear systems with unknown time delays. IEEE Trans. Autom. Control 52(12), 2360 (2007)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Wu, X.J., Wu, X.L., Luo, X.Y., Guan, X.P.: Dynamic surface control for a class of state-constrained non-linear systems with uncertain time delays. IET Control Theory Appl. 6(12), 1948 (2012)MathSciNetGoogle Scholar
  13. 13.
    Gao, S., Dong, H., Ning, B.: Observed-based nonlinear feedback decentralized neural adaptive dynamic surface control for large-scale nonlinear systems. Int. J. Adapt. Control Signal Process. 31(11), 1 (2017)zbMATHGoogle Scholar
  14. 14.
    Dong, H., Gao, S., Ning, B., Tang, T., Li, Y., Valavanis, K.P.: Error-driven nonlinear feedback design for fuzzy adaptive dynamic surface control of nonlinear systems with prescribed tracking performance. IEEE Trans. Syst. Man Cybern. Syst. 99, 1 (2017).  https://doi.org/10.1109/TSMC.2017.2734698 Google Scholar
  15. 15.
    Liu, Y.H., Huang, L., Xiao, D.: Adaptive dynamic surface control for uncertain nonaffine nonlinear systems. Int. J. Robust Nonlinear Control 27(4), 535 (2017)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Chen, J., Li, Z., Zhang, G., Gan, M.: Adaptive robust dynamic surface control with composite adaptation laws. Int. J. Adapt. Control Signal Process. 24(12), 1036 (2010)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Pan, Y., Yu, H.: Dynamic Surface Control Via Singular Perturbation Analysis. Pergamon Press, Inc., Oxford (2015)zbMATHGoogle Scholar
  18. 18.
    Farrell, J.A., Polycarpou, M., Sharma, M., Dong, W.: Command filtered backstepping. IEEE Trans. Autom. Control 54(6), 1391 (2009)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Sun, G., Ren, X., Chen, Q., Li, D.: A modified dynamic surface approach for control of nonlinear systems with unknown input dead zone. Int. J. Robust Nonlinear Control 25(8), 1145 (2015)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Chen, L., Qi, W.: Adaptive dynamic surface control for unknown pure feedback non-affine systems with multiple constraints. Nonlinear Dyn. 90(2), 1191 (2017)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Zong, Q., Ji, Y.H., Wang, F.: Input-to-state stability-modular command filtered back-stepping control of strict-feedback systems. IET Control Theory Appl. 6(8), 1125 (2012)MathSciNetGoogle Scholar
  22. 22.
    Yoo, S.J., Park, J.B., Choi, Y.H.: Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach. IEEE Trans. Neural Netw. 19(10), 1712 (2008)Google Scholar
  23. 23.
    Chen, W.S., Jiao, L.C., Du, Z.B.: Output-feedback adaptive dynamic surface control of stochastic non-linear systems using neural network. IET Control Theory Appl. 4(12), 3012 (2010)MathSciNetGoogle Scholar
  24. 24.
    Ni, J., Ling, L., Liu, C., Hu, X., Shen, T.: Fixed-time dynamic surface high-order sliding mode control for chaotic oscillation in power system. Nonlinear Dyn. 86(1), 401 (2016)zbMATHGoogle Scholar
  25. 25.
    Wang, W., Yu, Y.: In: International Conference on Informative and Cybernetics for Computational Social Systems, pp. 294–298 (2016)Google Scholar
  26. 26.
    Li, H., Dou, L., Su, Z.: Adaptive dynamic surface based nonsingular fast terminal sliding mode control for semistrict feedback system. J. Dyn. Syst. Meas. Control 134(2), 21011 (2012)Google Scholar
  27. 27.
    Lin, Z., Pachter, M., Banda, S.: Toward improvement of tracking performance nonlinear feedback for linear systems. Int. J. Control 70(1), 1 (1998)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Jiang, Z.P., Repperger, D.W., Hill, D.J.: Decentralized nonlinear output-feedback stabilization with disturbance attenuation. IEEE Trans. Autom. Control 46(10), 1623 (2001)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Zuo, Z., Wang, C.: Adaptive trajectory tracking control of output constrained multi-rotors systems. IET Control Theory Appl. 8(13), 1163 (2014)Google Scholar
  30. 30.
    Krstic, M., Kanellakopoulos, I., Kokotovic, P.V., et al.: Nonlinear and Adaptive Control Design, vol. 222. Wiley, New York (1995)zbMATHGoogle Scholar
  31. 31.
    Gao, S., Dong, H., Ning, B.: Neural adaptive dynamic surface control for uncertain strict-feedback nonlinear systems with nonlinear output and virtual feedback errors. Nonlinear Dyn. 90(4), 1 (2017)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Gao, S., Wang, X., Dong, H., Ning, B.: In: IECON 2017-Conference of the IEEE Industrial Electronics Society, pp. 5906–5911 (2017)Google Scholar
  33. 33.
    Liu, Y.H.: Adaptive dynamic surface asymptotic tracking for a class of uncertain nonlinear systems. Int. J. Robust Nonlinear Control 28(4), 1233 (2018)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Bechlioulis, C.P., Rovithakis, G.A.: Reinforcing robustness of adaptive dynamic surface control. Int. J. Adapt. Control Signal Process. 27(4), 323 (2013)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Electronic and Control EngineeringChang’an UniversityXi’anChina

Personalised recommendations