A co-simulation methodology to simulate the nonlinear aeroelastic behavior of a folding-wing concept in different flight configurations

  • Marcos L. VerstraeteEmail author
  • Bruno A. Roccia
  • Dean T. Mook
  • Sergio Preidikman
Original paper


A methodology to simulate the unsteady, nonlinear aeroelastic behavior of a folding-wing concept in multiple flight configurations is presented. It is based on a partitioned or co-simulation scheme, which divides the dynamical system into interacting aerodynamic and structural models. The aerodynamic model that predicts the loads is based on the unsteady vortex-lattice method. The structural model that predicts the motion of the folding wing is based on the finite-element method. The grids in the two models are non-matching. The method for simultaneously integrating the combined set of equations is based on the fourth-order predictor-corrector method developed by Hamming. The technique for transferring information between the non-matching grids is the radial basis interpolation method. This system is partially validated by showing that the predicted loads here agree very closely with numerical results based on the Euler equations for a wing with prescribed unsteady twisting and pitching motion and with analytical solutions available in the literature. Finally, a series of numerical simulations related to the aeroelastic behavior of a folding-wing concept inspired by gull wings provide new insights into flutter boundaries as a function of the dihedral angles of the inner and outer wings. The findings in this paper strongly suggest that the present numerical aeroelastic model will be a valuable computational tool for further studies of aircraft with morphing wings.


Morphing wings Aeroelasticity Unsteady vortex-lattice method 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Bae, J.S., Seigler, T.M., Inman, D.J.: Aerodynamic and static aeroelastic characteristics of a variable-span morphing wing. J. Aircr. 42, 528–534 (2005)CrossRefGoogle Scholar
  2. 2.
    Pecora, R., Magnifico, M., Amoroso, F., Monaco, E.: Multi-parametric flutter analysis of a morphing wing trailing edge. Aeronaut. J. 118, 1063–1078 (2014). CrossRefGoogle Scholar
  3. 3.
    Andersen, G.R., Cowan, D.L., Piatak, D.J.: Aeroelastic modeling, analysis and testing of a morphing wing structure. In: AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (2007).
  4. 4.
    Liska, S., Dowell, E.H.: Continuum aeroelastic model for a folding-wing configuration. AIAA J. 47, 2350–2358 (2009). CrossRefGoogle Scholar
  5. 5.
    Attar, P.J., Tang, D., Dowell, E.H.: Nonlinear aeroelastic study for folding-wing structures. AIAA J. 48, 2187–2195 (2010). CrossRefGoogle Scholar
  6. 6.
    Attar, P., Gordnier, R.: Aeroelastic modeling using a geometrically nonlinear p-version mixed Reissner–Mindlin plate element. In: 48th AIAA Structures, Structural Dynamics, and Materials Conference, AIAA Paper, April (2006).
  7. 7.
    Zhao, Y., Hu, H.: Parameterized aero elastic modeling and flutter analysis for a folding wing. J. Sound Vib. 331(2), 308–324 (2012). CrossRefGoogle Scholar
  8. 8.
    Wang, I., Gibbs, S.C., Dowell, E.H.: Aeroelastic model of multisegmented folding-wings: theory and experiment. J. Aircr. 49, 911–921 (2012). CrossRefGoogle Scholar
  9. 9.
    Wang, I., Gibbs S.C., Dowell, E.H.: Aeroelastic analysis of a folding-wing: comparison of simple and higher fidelity models for a wide range of fold angles. In: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Structures, Structural Dynamics, and Materials and Co-Located Conferences (2013).
  10. 10.
    Michler, C., Hulshoff, S.J., van Brummelen, E.H., de Borst, R.: A monolithic approach to fluid–structure interaction. Comput. Fluids 33(5–6), 839–848 (2004). CrossRefzbMATHGoogle Scholar
  11. 11.
    Ryzhakov, P.B., Rossi, R., Idelsohn, S.R., Oñate, E.: A monolithic Lagrangian approach for fluid–structure interaction problems. Comput. Mech. 46, 883–899 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hou, G., Wang, J., Layton, A.: Numerical methods for fluid–structure interaction—a review. Commun. Comput. Phys. 12, 337–377 (2012). MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Heil, M., Hazel, A.L., Boyle, J.: Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches. Comput. Mech. 43, 91–101 (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    Bose, Chandan, Gupta, Sayan, Sarkar, Sunetra: Dynamical stability analysis of a fluid structure interaction system using high fidelity Naviers–Stokes solver. Procedia Eng. 144, 883–890 (2016). CrossRefGoogle Scholar
  15. 15.
    Kalmar-Nagy, T., Stanciulescu, I.: Can complex systems really be simulated? Appl. Math. Comput. 227, 199–211 (2014). MathSciNetzbMATHGoogle Scholar
  16. 16.
    Cebral, J.R., Lohner, R.: Conservative load projection and tracking for fluid–structure problems. AIAA J. 35, 687–692 (1997). CrossRefzbMATHGoogle Scholar
  17. 17.
    Chen, P., Jadic, I.: Interfacing of fluid and structural models via innovative structural boundary element method. AIAA J. 36, 282–287 (1998). CrossRefzbMATHGoogle Scholar
  18. 18.
    Goura, G.S.L., Badcock, K.J., Woodgate, M.A., Richards, B.E.: A data exchange method for fluid–structure interaction problems. Aeronaut. J. 105, 215–221 (2001). CrossRefGoogle Scholar
  19. 19.
    Rendall, T.C.S., Allen, C.B.: Unified fluid–structure interpolation and mesh motion using radial basis functions. Int. J. Numer. Methods Eng. 74, 1519–1559 (2008). MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Rendall, T.C.S., Allen, C.B.: Improved radial basis function fluid–structure coupling via efficient localized implementation. Int. J. Numer. Methods Eng. 78, 1188–1208 (2009). MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lombardi, M., Parolini, N., Quarteroni, A.: Radial basis functions for inter-grid interpolation and mesh motion in FSI problems. Comput. Methods Appl. Mech. Eng. 256, 117–131 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    de Boer, A., van Zuijlen, A.H., Bijl, H.: Review of coupling methods for non-matching meshes. Comput. Methods Appl. Mech. Eng. 196, 1515–1525 (2007). MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Cheng, A.H.D., Cheng, D.T.: Heritage and early history of the boundary element method. Eng. Anal. Bound. Elem. 29, 268–302 (2005). CrossRefzbMATHGoogle Scholar
  24. 24.
    Roccia, B.A., Preidikman, S., Balachandran, B.: Computational dynamics of flapping wings in hover flight: a co-simulation strategy. AIAA J. 55, 1806–1822 (2017). CrossRefGoogle Scholar
  25. 25.
    Roccia, B.A., Preidikman, S., Verstraete, M.L., Mook, D.T.: Influence of spanwise twisting and bending on lift generation in MAV-like flapping wings. J. Aerosp. Eng. 30, 1 (2017). CrossRefGoogle Scholar
  26. 26.
    Maza, M., Preidikman, S., Flores, F.: Unsteady and non-linear aeroelastic analysis of large horizontal-axis wind turbines. Int. J. Hydrog. Energy 39, 8813–8820 (2014). CrossRefGoogle Scholar
  27. 27.
    Preidikman, S.: Numerical Simulations of Interactions Among Aerodynamics, Structural Dynamics, and Control Systems. Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg (1998)Google Scholar
  28. 28.
    Preidikman, S., Mook, D.T.: Time-domain simulations of linear and nonlinear aeroelastic behavior. J. Vib. Control 6, 1135–1175 (2000). CrossRefGoogle Scholar
  29. 29.
    Verstraete, M.L., Preidikman, S., Roccia, B.A., Mook, D.T.: A numerical model to study the nonlinear and unsteady aerodynamics on a bioinspired morphing wing concept. Int. J. Micro Air Veh. 7, 327–345 (2015). CrossRefGoogle Scholar
  30. 30.
    Konstandinopoulos, P., Thrasher, D.F., Mook, D.T., Nayfeh, A.H., Watson, L.: A vortex-lattice method for general unsteady aerodynamics. J. Aircr. 22, 1 (1985). CrossRefGoogle Scholar
  31. 31.
    Buhmann, M.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2005)zbMATHGoogle Scholar
  32. 32.
    Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)zbMATHGoogle Scholar
  33. 33.
    Carnahan, B., Luther, H.A., Wilkes, J.O.: Applied Numerical Methods. Wiley, New York (1969)zbMATHGoogle Scholar
  34. 34.
    Tennekes, H.: The Simple Science of Flight: From Insects to Jumbo Jets. MIT Press, Cambridge (2009)Google Scholar
  35. 35.
    Liu, T., Kuykendoll, K., Rhew, R., Jones, S.: Avian wing geometry and kinematics. AIAA J. 44, 954–963 (2006). CrossRefGoogle Scholar
  36. 36.
    Katz, J., Plotkin, A.: Low-Speed Aerodynamics, 2nd edn. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  37. 37.
    Roccia, B.A., Preidikman, S., Massa, J.C., Mook, D.T.: Modified unsteady vortex-lattice method to study flapping wings in hover flight. AIAA J. 51, 2628–2642 (2013). CrossRefGoogle Scholar
  38. 38.
    Bucalem, M.L., Bathe, K.-J.: The Mechanics of Solids and Structures-Hierarchical Modeling and the Finite-Element Solution. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  39. 39.
    Hughes, T.J.R.: The Finite-Element Method: Linear Static and Dynamic Finite-Element Analysis. Dover, Mineola (2000)zbMATHGoogle Scholar
  40. 40.
    Beckert, A., Wendland, H.: Multivariate interpolation for fluid–structure-interaction problems using radial basis functions. Aerosp. Sci. Technol. 5, 125–134 (2001). CrossRefzbMATHGoogle Scholar
  41. 41.
    de Boer, A., van der Schoot, M.S., Bijl, H.: Mesh deformation based on radial basis function interpolation. Comput. Struct. 85, 784–795 (2007). CrossRefGoogle Scholar
  42. 42.
    Crespo da Silva, M.: Fundamentals of Dynamics and Analysis of Motion. Dover Books on Engineering, New York (2016)Google Scholar
  43. 43.
    Neef, M., Hummel, D.: Euler solution for a finite-span flapping wing. Fixed and flapping wing aerodynamics for micro air vehicle applications. In: Muller, T.J. (ed.) Chapter 19: Progress in Astronautics and Aeronautics, vol. 195, pp. 429–449. AIAA, Reston (2001)Google Scholar
  44. 44.
    Verstraete, M.L.: Simulaciones numéricas del comportamiento aeroelástico de vehículos aéreos no tripulados con alas que cambian de forma. Ph.D. Dissertation, Engineering School, National University of Rio Cuarto, Argentina (2016)Google Scholar
  45. 45.
    Fung, Y.C.: An Introduction to the Theory of Aeroelasticity. Dover, New York (1955)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Group of Applied MathematicsNational University of Rio CuartoCórdobaArgentina
  2. 2.CONICET - National Scientific and Technical Research CouncilBuenos AiresArgentina
  3. 3.Virginia Polytechnic Institute and State UniversityBlacksburgUSA
  4. 4.National University of CórdobaCórdobaArgentina

Personalised recommendations