Advertisement

A co-simulation methodology to simulate the nonlinear aeroelastic behavior of a folding-wing concept in different flight configurations

  • Marcos L. VerstraeteEmail author
  • Bruno A. Roccia
  • Dean T. Mook
  • Sergio Preidikman
Original paper
  • 24 Downloads

Abstract

A methodology to simulate the unsteady, nonlinear aeroelastic behavior of a folding-wing concept in multiple flight configurations is presented. It is based on a partitioned or co-simulation scheme, which divides the dynamical system into interacting aerodynamic and structural models. The aerodynamic model that predicts the loads is based on the unsteady vortex-lattice method. The structural model that predicts the motion of the folding wing is based on the finite-element method. The grids in the two models are non-matching. The method for simultaneously integrating the combined set of equations is based on the fourth-order predictor-corrector method developed by Hamming. The technique for transferring information between the non-matching grids is the radial basis interpolation method. This system is partially validated by showing that the predicted loads here agree very closely with numerical results based on the Euler equations for a wing with prescribed unsteady twisting and pitching motion and with analytical solutions available in the literature. Finally, a series of numerical simulations related to the aeroelastic behavior of a folding-wing concept inspired by gull wings provide new insights into flutter boundaries as a function of the dihedral angles of the inner and outer wings. The findings in this paper strongly suggest that the present numerical aeroelastic model will be a valuable computational tool for further studies of aircraft with morphing wings.

Keywords

Morphing wings Aeroelasticity Unsteady vortex-lattice method 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bae, J.S., Seigler, T.M., Inman, D.J.: Aerodynamic and static aeroelastic characteristics of a variable-span morphing wing. J. Aircr. 42, 528–534 (2005)CrossRefGoogle Scholar
  2. 2.
    Pecora, R., Magnifico, M., Amoroso, F., Monaco, E.: Multi-parametric flutter analysis of a morphing wing trailing edge. Aeronaut. J. 118, 1063–1078 (2014).  https://doi.org/10.1017/S000192400000974X CrossRefGoogle Scholar
  3. 3.
    Andersen, G.R., Cowan, D.L., Piatak, D.J.: Aeroelastic modeling, analysis and testing of a morphing wing structure. In: AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (2007).  https://doi.org/10.2514/6.2007-1734
  4. 4.
    Liska, S., Dowell, E.H.: Continuum aeroelastic model for a folding-wing configuration. AIAA J. 47, 2350–2358 (2009).  https://doi.org/10.2514/1.40475 CrossRefGoogle Scholar
  5. 5.
    Attar, P.J., Tang, D., Dowell, E.H.: Nonlinear aeroelastic study for folding-wing structures. AIAA J. 48, 2187–2195 (2010).  https://doi.org/10.2514/1.44868 CrossRefGoogle Scholar
  6. 6.
    Attar, P., Gordnier, R.: Aeroelastic modeling using a geometrically nonlinear p-version mixed Reissner–Mindlin plate element. In: 48th AIAA Structures, Structural Dynamics, and Materials Conference, AIAA Paper, April (2006).  https://doi.org/10.2514/6.2007-2318
  7. 7.
    Zhao, Y., Hu, H.: Parameterized aero elastic modeling and flutter analysis for a folding wing. J. Sound Vib. 331(2), 308–324 (2012).  https://doi.org/10.1016/j.jsv.2011.08.028 CrossRefGoogle Scholar
  8. 8.
    Wang, I., Gibbs, S.C., Dowell, E.H.: Aeroelastic model of multisegmented folding-wings: theory and experiment. J. Aircr. 49, 911–921 (2012).  https://doi.org/10.2514/1.C031589 CrossRefGoogle Scholar
  9. 9.
    Wang, I., Gibbs S.C., Dowell, E.H.: Aeroelastic analysis of a folding-wing: comparison of simple and higher fidelity models for a wide range of fold angles. In: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Structures, Structural Dynamics, and Materials and Co-Located Conferences (2013).  https://doi.org/10.2514/6.2013-1635
  10. 10.
    Michler, C., Hulshoff, S.J., van Brummelen, E.H., de Borst, R.: A monolithic approach to fluid–structure interaction. Comput. Fluids 33(5–6), 839–848 (2004).  https://doi.org/10.1016/j.compfluid.2003.06.006 CrossRefzbMATHGoogle Scholar
  11. 11.
    Ryzhakov, P.B., Rossi, R., Idelsohn, S.R., Oñate, E.: A monolithic Lagrangian approach for fluid–structure interaction problems. Comput. Mech. 46, 883–899 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hou, G., Wang, J., Layton, A.: Numerical methods for fluid–structure interaction—a review. Commun. Comput. Phys. 12, 337–377 (2012).  https://doi.org/10.4208/cicp.291210.290411s MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Heil, M., Hazel, A.L., Boyle, J.: Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches. Comput. Mech. 43, 91–101 (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    Bose, Chandan, Gupta, Sayan, Sarkar, Sunetra: Dynamical stability analysis of a fluid structure interaction system using high fidelity Naviers–Stokes solver. Procedia Eng. 144, 883–890 (2016).  https://doi.org/10.1016/j.proeng.2016.05.107 CrossRefGoogle Scholar
  15. 15.
    Kalmar-Nagy, T., Stanciulescu, I.: Can complex systems really be simulated? Appl. Math. Comput. 227, 199–211 (2014).  https://doi.org/10.1016/j.amc.2013.11.037 MathSciNetzbMATHGoogle Scholar
  16. 16.
    Cebral, J.R., Lohner, R.: Conservative load projection and tracking for fluid–structure problems. AIAA J. 35, 687–692 (1997).  https://doi.org/10.2514/2.158 CrossRefzbMATHGoogle Scholar
  17. 17.
    Chen, P., Jadic, I.: Interfacing of fluid and structural models via innovative structural boundary element method. AIAA J. 36, 282–287 (1998).  https://doi.org/10.2514/2.7513 CrossRefzbMATHGoogle Scholar
  18. 18.
    Goura, G.S.L., Badcock, K.J., Woodgate, M.A., Richards, B.E.: A data exchange method for fluid–structure interaction problems. Aeronaut. J. 105, 215–221 (2001).  https://doi.org/10.1017/S0001924000025458 CrossRefGoogle Scholar
  19. 19.
    Rendall, T.C.S., Allen, C.B.: Unified fluid–structure interpolation and mesh motion using radial basis functions. Int. J. Numer. Methods Eng. 74, 1519–1559 (2008).  https://doi.org/10.1002/nme.2219 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Rendall, T.C.S., Allen, C.B.: Improved radial basis function fluid–structure coupling via efficient localized implementation. Int. J. Numer. Methods Eng. 78, 1188–1208 (2009).  https://doi.org/10.1002/nme.2526 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lombardi, M., Parolini, N., Quarteroni, A.: Radial basis functions for inter-grid interpolation and mesh motion in FSI problems. Comput. Methods Appl. Mech. Eng. 256, 117–131 (2013).  https://doi.org/10.1016/j.cma.2012.12.019 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    de Boer, A., van Zuijlen, A.H., Bijl, H.: Review of coupling methods for non-matching meshes. Comput. Methods Appl. Mech. Eng. 196, 1515–1525 (2007).  https://doi.org/10.1016/j.cma.2006.03.017 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Cheng, A.H.D., Cheng, D.T.: Heritage and early history of the boundary element method. Eng. Anal. Bound. Elem. 29, 268–302 (2005).  https://doi.org/10.1016/j.enganabound.2004.12.001 CrossRefzbMATHGoogle Scholar
  24. 24.
    Roccia, B.A., Preidikman, S., Balachandran, B.: Computational dynamics of flapping wings in hover flight: a co-simulation strategy. AIAA J. 55, 1806–1822 (2017).  https://doi.org/10.2514/1.J055137 CrossRefGoogle Scholar
  25. 25.
    Roccia, B.A., Preidikman, S., Verstraete, M.L., Mook, D.T.: Influence of spanwise twisting and bending on lift generation in MAV-like flapping wings. J. Aerosp. Eng. 30, 1 (2017).  https://doi.org/10.1061/(ASCE)AS.1943-5525.0000677 CrossRefGoogle Scholar
  26. 26.
    Maza, M., Preidikman, S., Flores, F.: Unsteady and non-linear aeroelastic analysis of large horizontal-axis wind turbines. Int. J. Hydrog. Energy 39, 8813–8820 (2014).  https://doi.org/10.1016/j.ijhydene.2013.12.028 CrossRefGoogle Scholar
  27. 27.
    Preidikman, S.: Numerical Simulations of Interactions Among Aerodynamics, Structural Dynamics, and Control Systems. Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg (1998)Google Scholar
  28. 28.
    Preidikman, S., Mook, D.T.: Time-domain simulations of linear and nonlinear aeroelastic behavior. J. Vib. Control 6, 1135–1175 (2000).  https://doi.org/10.1177/107754630000600802 CrossRefGoogle Scholar
  29. 29.
    Verstraete, M.L., Preidikman, S., Roccia, B.A., Mook, D.T.: A numerical model to study the nonlinear and unsteady aerodynamics on a bioinspired morphing wing concept. Int. J. Micro Air Veh. 7, 327–345 (2015).  https://doi.org/10.1260/1756-8293.7.3.327 CrossRefGoogle Scholar
  30. 30.
    Konstandinopoulos, P., Thrasher, D.F., Mook, D.T., Nayfeh, A.H., Watson, L.: A vortex-lattice method for general unsteady aerodynamics. J. Aircr. 22, 1 (1985).  https://doi.org/10.2514/3.45078 CrossRefGoogle Scholar
  31. 31.
    Buhmann, M.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2005)zbMATHGoogle Scholar
  32. 32.
    Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)zbMATHGoogle Scholar
  33. 33.
    Carnahan, B., Luther, H.A., Wilkes, J.O.: Applied Numerical Methods. Wiley, New York (1969)zbMATHGoogle Scholar
  34. 34.
    Tennekes, H.: The Simple Science of Flight: From Insects to Jumbo Jets. MIT Press, Cambridge (2009)Google Scholar
  35. 35.
    Liu, T., Kuykendoll, K., Rhew, R., Jones, S.: Avian wing geometry and kinematics. AIAA J. 44, 954–963 (2006).  https://doi.org/10.2514/1.16224 CrossRefGoogle Scholar
  36. 36.
    Katz, J., Plotkin, A.: Low-Speed Aerodynamics, 2nd edn. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  37. 37.
    Roccia, B.A., Preidikman, S., Massa, J.C., Mook, D.T.: Modified unsteady vortex-lattice method to study flapping wings in hover flight. AIAA J. 51, 2628–2642 (2013).  https://doi.org/10.2514/1.J052262 CrossRefGoogle Scholar
  38. 38.
    Bucalem, M.L., Bathe, K.-J.: The Mechanics of Solids and Structures-Hierarchical Modeling and the Finite-Element Solution. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  39. 39.
    Hughes, T.J.R.: The Finite-Element Method: Linear Static and Dynamic Finite-Element Analysis. Dover, Mineola (2000)zbMATHGoogle Scholar
  40. 40.
    Beckert, A., Wendland, H.: Multivariate interpolation for fluid–structure-interaction problems using radial basis functions. Aerosp. Sci. Technol. 5, 125–134 (2001).  https://doi.org/10.1016/S1270-9638(00)01087-7 CrossRefzbMATHGoogle Scholar
  41. 41.
    de Boer, A., van der Schoot, M.S., Bijl, H.: Mesh deformation based on radial basis function interpolation. Comput. Struct. 85, 784–795 (2007).  https://doi.org/10.1016/j.compstruc.2007.01.013 CrossRefGoogle Scholar
  42. 42.
    Crespo da Silva, M.: Fundamentals of Dynamics and Analysis of Motion. Dover Books on Engineering, New York (2016)Google Scholar
  43. 43.
    Neef, M., Hummel, D.: Euler solution for a finite-span flapping wing. Fixed and flapping wing aerodynamics for micro air vehicle applications. In: Muller, T.J. (ed.) Chapter 19: Progress in Astronautics and Aeronautics, vol. 195, pp. 429–449. AIAA, Reston (2001)Google Scholar
  44. 44.
    Verstraete, M.L.: Simulaciones numéricas del comportamiento aeroelástico de vehículos aéreos no tripulados con alas que cambian de forma. Ph.D. Dissertation, Engineering School, National University of Rio Cuarto, Argentina (2016)Google Scholar
  45. 45.
    Fung, Y.C.: An Introduction to the Theory of Aeroelasticity. Dover, New York (1955)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Group of Applied MathematicsNational University of Rio CuartoCórdobaArgentina
  2. 2.CONICET - National Scientific and Technical Research CouncilBuenos AiresArgentina
  3. 3.Virginia Polytechnic Institute and State UniversityBlacksburgUSA
  4. 4.National University of CórdobaCórdobaArgentina

Personalised recommendations