Advertisement

Two-breather solutions for the class I infinitely extended nonlinear Schrödinger equation and their special cases

  • M. CrabbEmail author
  • N. Akhmediev
Original paper
  • 30 Downloads

Abstract

We derive the two-breather solution of the class I infinitely extended nonlinear Schrödinger equation. We present a general form of this multi-parameter solution that includes infinitely many free parameters of the equation and free parameters of the two breather components. Particular cases of this solution include rogue wave triplets, and special cases of ‘breather-to-soliton’ and ‘rogue wave-to-soliton’ transformations. The presence of many parameters in the solution allows one to describe wave propagation problems with higher accuracy than with the use of the basic NLSE.

Keywords

Infinitely extended NLSE Breathers Rogue waves 

Notes

Acknowledgements

The authors gratefully acknowledge the support of the Australian Research Council (Discovery Project DP150102057).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. J. Exp. Theor. Phys. 34, 62–69 (1972)MathSciNetGoogle Scholar
  2. 2.
    Akhmediev, N., Ankiewicz, A.: Solitons, Nonlinear Pulses and Beams. Chapman and Hall, London (1997)zbMATHGoogle Scholar
  3. 3.
    Osborne, A.: Nonlinear Ocean Waves and the Inverse Scattering Transform. International Geophysics Series, vol. 97. Academic Press, Cambridge (2010)zbMATHGoogle Scholar
  4. 4.
    Kharif, C., Pelinovsky, E., Slunyaev, A.: Rogue Waves in the Ocean. Springer, Berlin (2009)zbMATHGoogle Scholar
  5. 5.
    Onorato, M., Proment, D., Clauss, G., Klein, M.: Rogue Waves: From Nonlinear Schrödinger Breather Solutions to Sea-Keeping Test. PLoS ONE 8, e5462 (2013)CrossRefGoogle Scholar
  6. 6.
    Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973)CrossRefGoogle Scholar
  7. 7.
    Agrawal, G.P.: Nonlinear Fiber Optics (Optics and Photonics), 4th edn. Elsevier, Amsterdam (2006)Google Scholar
  8. 8.
    Dudley, J.M., Genty, G., Coen, S.: Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135 (2006)CrossRefGoogle Scholar
  9. 9.
    Theocharis, G., Rapti, Z., Kevrekidis, P., Frantzeskakis, D., Konotop, V.: Modulational instability of Gross–Pitaevskii-type equations in 1+1 dimensions. Phys. Rev. A 67, 063610 (2003)CrossRefGoogle Scholar
  10. 10.
    Bobrov, V.B., Trigger, S.A.: Bose–Einstein condensate wave function and nonlinear Schrödinger equation. Bull. Lebedev Phys. Inst. 43, 266 (2016)CrossRefGoogle Scholar
  11. 11.
    Galati, L., Zheng, S.: Nonlinear Schrödinger equations for Bose–Einstein condensates. AIP Conf. Proc. 1562, 50 (2013)CrossRefGoogle Scholar
  12. 12.
    Mithun, T., Kasamatsu, K.: Modulation instability associated nonlinear dynamics of spin-orbit coupled Bose–Einstein condensates. J. Phys. B Atom. Molec. Opt. Phys. 52, 045301 (2019)CrossRefGoogle Scholar
  13. 13.
    Stenflo, L., Marklund, M.: Rogue waves in the atmosphere. J. Plasma Phys. 76, 293–295 (2010)CrossRefGoogle Scholar
  14. 14.
    Kolomeisky, E.B.: Nonlinear plasma waves in an electron gas. J. Phys. A Math. Theor. 51, 35LT02 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sulem, C., Sulem, P.P.: The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse. Applied Mathematics Sciences, vol. 139. Springer, New York (1999)zbMATHGoogle Scholar
  16. 16.
    Yildirim, Y., Celik, N., Yasar, E.: Nonlinear Schrödinger equations with spatio-temporal dispersion in Kerr, parabolic, power and dual power law media: a novel extended Kudryashov’s algorithm and soliton solutions. Results Phys. 7, 3116 (2017)CrossRefGoogle Scholar
  17. 17.
    Castro, C., Mahecha, J.: On nonlinear quantum mechanics, Brownian motion, Weyl geometry and Fisher information. Prog. Phys. 1, 38 (2006)Google Scholar
  18. 18.
    Czachor, M.: Nonlinear Schrödinger equation and two-level atoms. Phys. Rev. A 53, 1310 (1996)CrossRefGoogle Scholar
  19. 19.
    Vladimirov, A.G., Gurevich, S.V., Tlidi, M.: Effect of Cherenkov radiation on localized-state interaction. Phys. Rev. A 97, 013816 (2018)CrossRefGoogle Scholar
  20. 20.
    Roelofs, G.H.M., Kersten, P.: Supersymmetric extensions of the nonlinear Schrödinger equation: symmetries and coverings. J. Math. Phys. 33, 2185–2206 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ohkuma, K., Ichikawa, Y.H., Abe, Y.: Soliton propagation along optical fibers. Opt. Lett. 12, 516–518 (1987)CrossRefGoogle Scholar
  22. 22.
    Al Qurashi, M.M., Yusuf, A., Aliyu, A.I., Inc, M.: Optical and other solitons for the fourth-order dispersive nonlinear Schrödinger equation with dual-power law nonlinearity. Superlattices Microstruct. 105, 183 (2017)CrossRefGoogle Scholar
  23. 23.
    Nikolić, S.N., Ashour, O.A., Aleksić, N.B., Belić, M.R., Chin, S.A.: Breathers, solitons and rogue waves of the quintic nonlinear Schrödinger equation on various backgrounds. Nonlinear Dyn. 95, 2855 (2019)CrossRefGoogle Scholar
  24. 24.
    Wang, Y.-Y., Dai, C.-Q., Zhou, G.-Q., Fan, Y., Chen, L.: Rogue wave and combined breather with repeatedly excited behaviors in the dispersion/diffraction decreasing medium. Nonlinear Dyn. 87, 67 (2017)CrossRefGoogle Scholar
  25. 25.
    Mihalache, D., Panoiu, N.C., Moldoveanu, F., Baboiu, D.-M.: The Riemann problem method for solving a perturbed nonlinear Schrodinger equation describing pulse propagation in optical fibres. J. Phys. A Math.Gen. 27, 6177–6189 (1994)CrossRefzbMATHGoogle Scholar
  26. 26.
    Mihalache, D., Torner, L., Moldoveanu, F., Panoiu, N.C., Truta, N.: Inverse-scattering approach to femtosecond solitons in monomode optical fibers. Phys. Rev. E 48, 4699 (1993)CrossRefGoogle Scholar
  27. 27.
    Baronio, F., Degasperis, A., Conforti, M., Wabnitz, S.: Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves. Phys. Rev. Lett. 109, 044102 (2012)CrossRefGoogle Scholar
  28. 28.
    Andreev, P.A.: First principles derivation of NLS equation for BEC with cubic and quintic nonlinearities at nonzero temperature: dispersion of linear waves. Int. J. Mod. Phys. B 27, 1350017 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Trippenbach, M., Band, Y.B.: Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media. Phys. Rev. A 57, 4791 (1991)CrossRefGoogle Scholar
  30. 30.
    Potasek, M.J., Tabor, M.: Exact solutions for an extended nonlinear Schrödinger equation. Phys. Lett. A 154, 449–452 (1991)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Cavalcanti, S.B., Cressoni, J.C., da Cruz, H.R., Gouveia-Neto, A.S.: Modulation instability in the region of minimum group-velocity dispersion of single-mode optical fibers via an extended nonlinear Schrödinger equation. Phys. Rev. A 43, 6162 (1991)CrossRefGoogle Scholar
  32. 32.
    Trulsen, K., Dysthe, K.B.: A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. Wave Motion 24, 281–298 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Slunyaev, A.V.: A high-order nonlinear envelope equation for gravity waves in finite-depth water. J. Exp. Theor. Phys. 101, 926–941 (2005)CrossRefGoogle Scholar
  34. 34.
    Sedletskii, Y.V.: The fourth-order nonlinear Schrödinger equation for the envelope of Stokes waves on the surface of a finite-depth fluid. J. Exp. Theor. Phys. 97, 180–193 (2003)CrossRefGoogle Scholar
  35. 35.
    Onorato, M., Residori, S., Bortolozzo, U., Montina, A., Arecchi, F.T.: Rogue waves and their generating mechanisms in different physical contexts. Sci. Rep. 528, 47–89 (2013)MathSciNetGoogle Scholar
  36. 36.
    Ohta, Y., Yang, J.K.: Rogue waves in the Davey–Stewartson I equation. Phys. Rev. E 86, 036604 (2012)CrossRefGoogle Scholar
  37. 37.
    Baronio, F., Conforti, M., Degasperis, A., Lombardo, S.: Rogue waves emerging from the resonant interaction of three waves. Phys. Rev. Lett. 111, 114101 (2013)CrossRefGoogle Scholar
  38. 38.
    Chen, S., Baronio, F., Soto-Crespo, J.M., Grelu, P., Mihalache, D.: Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems. J. Phys. A Math. Theor. 50, 463001 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Malomed, B.A., Mihalache, D.: Nonlinear waves in optical and matter-wave media: a topical survey of recent theoretical and experimental results. Rom. J. Phys. 64, 106 (2019)Google Scholar
  40. 40.
    Kedziora, D.J., Ankiewicz, A., Chowdury, A., Akhmediev, N.: Integrable equations of the infinite nonlinear Schrödinger equation hierarchy with time variable coefficients. Chaos 25, 103114 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Ankiewicz, A., Kedziora, D.J., Chowdury, A., Bandelow, U., Akhmediev, N.: Infinite hierarchy of nonlinear Schrödinger equations and their solutions. Phys. Rev. E 93, 012206 (2016)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Ankiewicz, A., Akhmediev, N.: Rogue wave solutions for the infinite integrable nonlinear Schrödinger equation hierarchy. Phys. Rev. E 96, 012219 (2017)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Bandelow, U., Ankiewicz, A., Amiranashvili, S., Akhmediev, N.: Sasa-Satsuma hierarchy of integrable evolution equations. Chaos 28, 053108 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Ankiewicz, A., Bandelow, U., Akhmediev, N.: Generalised Sasa–Satsuma equation: densities approach to new infinite hierarchy of integrable evolution equations, Zeitschrift für Naturforschung, section A. J. Phys. Sci. 73(12), 1121–1128 (2018)Google Scholar
  45. 45.
    Crabb, M., Akhmediev, N.: Doubly periodic solutions of the class-I infinitely extended nonlinear Schrödinger equation. Phys. Rev. E 99, 052217 (2019)CrossRefGoogle Scholar
  46. 46.
    Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81, 046602 (2010)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Lakshmanan, M., Porsezian, K., Daniel, M.: Effect of discreteness on the continuum limit of the Heisenberg spin chain. Phys. Lett. A 133, 483 (1988)CrossRefGoogle Scholar
  48. 48.
    Porsezian, K., Daniel, M., Lakshmanan, M.: On the integrability aspects of the one-dimensional classical continuum isotropic biquadratic Heisenberg spin chain. J. Math. Phys. 33, 1807–1816 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Akhmediev, N.N., Mitzkevich, N.V.: Extremely high degree of \(N\)-soliton pulse compression in an optical fiber. IEEE J. Quantum Electron. 27, 849 (1991)CrossRefGoogle Scholar
  50. 50.
    Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits. Phys. Rev. E 85, 066601 (2012)CrossRefGoogle Scholar
  51. 51.
    Chowdury, A., Krolikowski, W., Akhmediev, N.: Breather solutions of a fourth-order nonlinear Schrödinger equation in the degenerate, soliton, and rogue wave limits. Phys. Rev. E 96, 042209 (2017)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Ankiewicz, A., Chowdury, A.: Superposition of solitons with arbitrary parameters for higher-order equations. Z. Naturforsch. 71(7a), 647–656 (2016)Google Scholar
  53. 53.
    Akhmediev, N., Eleonskii, V.M., Kulagin, N.E.: Generation of periodic trains of picosecond pulses in an optical fiber: exact solutions. Sov. Phys. JETP 62, 894 (1985)Google Scholar
  54. 54.
    Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009)CrossRefzbMATHGoogle Scholar
  55. 55.
    Ankiewicz, A., Akhmediev, N.: Multi-rogue waves and triangular numbers. Rom. Rep. Phys. 69, 104 (2017)Google Scholar
  56. 56.
    Ankiewicz, A., Kedziora, D.J., Akhmediev, N.: Rogue wave triplets. Phys. Lett. A 375, 2782–2785 (2011)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Optical Sciences Group, Research School of Physics and EngineeringThe Australian National UniversityCanberraAustralia

Personalised recommendations