Advertisement

Nonlinear Dynamics

, Volume 97, Issue 4, pp 2661–2673 | Cite as

Capacitor coupling induces synchronization between neural circuits

  • Zhilong Liu
  • Chunni WangEmail author
  • Wuyin Jin
  • Jun Ma
Original paper
  • 89 Downloads

Abstract

The signal propagation and information encoding in neurons are much dependent on the activation of synapses function. Electric synapse often plays short-range modulation so that neurons can give fast responses to external stimulus while chemical synapse keeps active under long-range modulation on neural activities. Each neuron can be considered as an intelligent signal processor and appropriate setting in parameters in the electric devices can build reliable neural circuits to detect effective signal exchange and propagation. In this paper, a two-variable FitzHugh–Nagumo electrical oscillator driven by a sinusoidal voltage source is used to investigate the synchronization when the coupling capacitor is activated, which both of the plates of the coupling capacitor can trigger time-varying electric field in the capacitor, and energy flow is propagated to modulate the outputs of neural circuits. The circuit equations are obtained, and scale transformation is applied to get a dimensionless dynamical system under field coupling, and the error function for output voltage and phases is calculated to judge whether complete synchronization and phase synchronization can be realized by selecting different capacitances for the coupling capacitor. It is found that synchronization realization between neurons can be controlled by adjusting the capacitance of coupling capacitor. For two identical neurons driven by the same stimulus, complete synchronization is reached, while phase synchronization is stabilized when neurons are driven by different stimuli as the capacitor coupling is switched on. Furthermore, the realization of complete synchronization is verified on the analog circuits. It provides another new scheme for synchronization realization between neurons and a new mechanism for signal encoding in neurons via field coupling is explained.

Keywords

Neural circuit Field coupling Phase synchronization Capacitor 

Notes

Acknowledgements

This project is partially supported by National Natural Science Foundation of China under Grant No.11765011, and the HongLiu first-class disciplines Development Program of Lanzhou University of Technology. The authors give great thanks to Dr. Fuqiang Wu for checking the numerical results and producing Fig. 10 in this paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Di Garbo, A., Barbi, M., Chillemi, S.: The synchronization properties of a network of inhibitory interneurons depend on the biophysical model. BioSystems 88(3), 216–227 (2007)CrossRefGoogle Scholar
  2. 2.
    Suykens, J.A.K., Osipov, G.V.: Introduction to focus issue: synchronization in complex networks. Chaos 18, 037101 (2008)CrossRefGoogle Scholar
  3. 3.
    Aqil, M., Hong, K.S., Jeong, M.Y., et al.: Detection of event-related hemodynamic response to neuroactivation by dynamic modeling of brain activity. Neuroimage 63(1), 553–568 (2012)CrossRefGoogle Scholar
  4. 4.
    Nowotny, T., Huerta, R., Rabinovich, M.I.: Neuronal synchrony: peculiarity and generality. Chaos 18, 037119 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Mejias, J.F., Torres, J.J.: Improvement of spike coincidence detection with facilitating synapses. Neurocomputing 70(10–12), 2026–2029 (2007)CrossRefGoogle Scholar
  6. 6.
    Deak, G.O., Bartlett, M.S., Jebara, T.: New trends in cognitive science: integrative approaches to learning and development. Neurocomputing 70(13), 2139–2147 (2007)CrossRefGoogle Scholar
  7. 7.
    Dunin, B.W.L., Lovering, A.T., Orem, J.M.: A neural ensemble model of the respiratory central pattern generator: properties of the minimal model. Neurocomputing 44, 381–389 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Shin, J.H., Smith, D., Swiercz, W., et al.: Recognition of partially occluded and rotated images with a network of spiking neurons. IEEE Trans. Neural Netw. 21(11), 1697–1709 (2010)CrossRefGoogle Scholar
  9. 9.
    Muhammad, I., Muhammad, R., Hon, K.S.: Modeling of inter-neuronal coupling medium and its impact on neuronal synchronization. PLoS ONE 12, e0176986 (2017)CrossRefGoogle Scholar
  10. 10.
    Limousin, P., Martinez-Torres, I.: Deep brain stimulation for Parkinson’s disease. Neurotherapeutics 5, 309–319 (2008)CrossRefGoogle Scholar
  11. 11.
    Jobst, B.: Brain stimulation for surgical epilepsy. Epilepsy Res. 89(1), 154–161 (2010)CrossRefGoogle Scholar
  12. 12.
    Ostrem, J.L., Starr, P.A.: Treatment of dystonia with deep brain stimulation. Neurotherapeutics 5, 320–330 (2008)CrossRefGoogle Scholar
  13. 13.
    Neher, E., Sakmann, B.: The patch clamp technique. Sci. Am. 266(3), 44–51 (1992)CrossRefGoogle Scholar
  14. 14.
    Phillipson, P.E., Schuster, P.: A comparative study of the Hodgkin–Huxley and FitzHugh–Nagumo models of neuron pulse propagation. Int. J. Bifurc. Chaos 15(12), 3851–3866 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ma, J., Zhang, G., Hayat, T., et al.: Model electrical activity of neuron under electric field. Nonlinear Dyn. 95, 1585–1598 (2019)CrossRefGoogle Scholar
  16. 16.
    Wu, F., Ma, J., Zhang, G.: A new neuron model under electromagnetic field. Appl. Math. Comput. 347, 590–599 (2019)MathSciNetGoogle Scholar
  17. 17.
    Brunel, N., Hakim, V., Richardson, M.J.E.: Single neuron dynamics and computation. Curr. Opin. Neurobiol. 25, 149–155 (2014)CrossRefGoogle Scholar
  18. 18.
    Coombes, S., Thul, R., Wedgwood, K.C.A.: Nonsmooth dynamics in spiking neuron models. Physica D 241(22), 2042–2057 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Herz, A.V.M., Gollisch, T., Machens, C.K., et al.: Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science 314(5796), 80–85 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Paixão, S., Klein, R.: Neuron-astrocyte communication and synaptic plasticity. Curr. Opin. Neurobiol. 20(4), 466–473 (2010)CrossRefGoogle Scholar
  21. 21.
    Seifert, G., Steinhäuser, C.: Neuron-astrocyte signaling and epilepsy. Exp. Neurol. 244, 4–10 (2013)CrossRefGoogle Scholar
  22. 22.
    Parpura, V., Basarsky, T.A., Liu, F., et al.: Glutamate-mediated astrocyte-neuron signaling. Nature 369(6483), 744 (1994)CrossRefGoogle Scholar
  23. 23.
    Fellin, T.: Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity. J. Neurochem. 108(3), 533–544 (2009)CrossRefGoogle Scholar
  24. 24.
    Postnov, D.E., Koreshkov, R.N., Brazhe, N.A., et al.: Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks. J. Biol. Phys. 35(4), 425–445 (2009)CrossRefGoogle Scholar
  25. 25.
    Guo, S.L., Tang, J., Ma, J., et al.: Autaptic modulation of electrical activity in a network of neuron-coupled astrocyte. Complexity 2017, 4631602 (2017)MathSciNetGoogle Scholar
  26. 26.
    Boccaletti, S., Grebogi, C., Lai, Y.C., et al.: The control of chaos: theory and applications. Phys. Rep. 329(3), 103–197 (2000)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Sanjuan, M.A., Grebogi, C.: Recent Progress in Controlling Chaos. World Scientific, Singapore (2010)CrossRefzbMATHGoogle Scholar
  28. 28.
    Ling, W.K.: Controlling Chaos: suppression, synchronization and chaotification. IEEE Comput. Intell. Mag. 6(1), 68–69 (2011)CrossRefGoogle Scholar
  29. 29.
    Fradkov, A.L., Pogromsky, A.Y.: Introduction to Control of Oscillations and Chaos. World Scientific, Singapore (1998) CrossRefzbMATHGoogle Scholar
  30. 30.
    Chen, G.R., Dong, X.N.: From Chaos to Order: Perspectives, Methodologies and Applications. World Scientific, Singapore (1993)zbMATHGoogle Scholar
  31. 31.
    Patidar, V., Pareek, N.K., Sud, K.K.: Suppression of chaos using mutual coupling. Phys. Lett. A 304(5–6), 121–129 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Wu, F., Zhou, P., Alsaedi, A., et al.: Synchronization dependence on initial setting of chaotic systems without equilibria. Chaos Solitons Fractals 110, 124–132 (2018)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Wu, F., Ma, J., Ren, G.: Synchronization stability between initial-dependent oscillators with periodical and chaotic oscillation. J. Zhejiang Univ. Sci. A 19(12), 889–903 (2018)CrossRefGoogle Scholar
  34. 34.
    Yang, K.H., Franaszczuk, P.J., Bergey, G.K.: The influences of somatic and dendritic inhibition on bursting patterns in a neuronal circuit model. Biol. Cybernet. 89(4), 242–253 (2003)CrossRefzbMATHGoogle Scholar
  35. 35.
    Bao, B.C., Wu, P.Y., Bao, H., et al.: Numerical and experimental confirmations of quasi-periodic behavior and chaotic bursting in third-order autonomous memristive oscillator. Chaos Solitons Fractals 106, 161–170 (2018)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Hu, X., Liu, C., Liu, L., et al.: An electronic implementation for Morris–Lecar neuron model. Nonlinear Dyn. 84, 2317–2332 (2016)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Ren, G., Xu, Y., Wang, C.: Synchronization behavior of coupled neuron circuits composed of memristors. Nonlinear Dyn. 88, 893–901 (2017)CrossRefGoogle Scholar
  38. 38.
    Ren, G., Zhou, P., Ma, J., et al.: Dynamical response of electrical activities in digital neuron circuit driven by autapse. Int. J. Bifurc. Chaos 27(12), 1750187 (2017)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Ge, M., Jia, Y., Xu, Y., et al.: Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn. 91, 515–523 (2018)CrossRefGoogle Scholar
  40. 40.
    Bolhasani, E., Azizi, Y., Valizadeh, A., et al.: Synchronization of oscillators through time-shifted common inputs. Phys. Rev. E 95, 032207 (2017)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Sun, X., Perc, M., Kurths, J.: Effects of partial time delays on phase synchronization in Watts–Strogatz small-world neuronal networks. Chaos 27(5), 053113 (2017)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Bera, B.K., Majhi, S., Ghosh, D., et al.: Chimera states: effects of different coupling topologies. EPL 118, 10001 (2017)CrossRefGoogle Scholar
  43. 43.
    Majhi, S., Perc, M., Ghosh, D.: Chimera states in a multilayer network of coupled and uncoupled neurons. Chaos 27(7), 073109 (2017)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Majhi, S., Perc, M., Ghosh, D.: Chimera states in uncoupled neurons induced by a multilayer structure. Sci. Rep. 6, 39033 (2016)CrossRefGoogle Scholar
  45. 45.
    Ma, J., Song, X., Tang, J., et al.: Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing 167, 378–389 (2015)CrossRefGoogle Scholar
  46. 46.
    Ma, J., Qin, H., Song, X., et al.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Mod. Phys. B 29, 1450239 (2015)CrossRefGoogle Scholar
  47. 47.
    Xiao, W.W., Gu, H.G., Liu, M.R.: Spatiotemporal dynamics in a network composed of neurons with different excitabilities and excitatory coupling. Sci. China Technol. Sci. 59, 1943–1952 (2016)CrossRefGoogle Scholar
  48. 48.
    Gu, H., Pan, B., Li, Y.: The dependence of synchronization transition processes of coupled neurons with coexisting spiking and bursting on the control parameter, initial value, and attraction domain. Nonlinear Dyn. 82, 1191–1210 (2015)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Sun, X., Li, G.: Synchronization transitions induced by partial time delay in a excitatory-inhibitory coupled neuronal network. Nonlinear Dyn. 89, 2509–2520 (2017)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Shi, X., Sun, X., Lv, Y., et al.: Cluster synchronization and rhythm dynamics in a complex neuronal network with chemical synapses. Int. J. Non-linear Mech. 70, 112–118 (2015)CrossRefGoogle Scholar
  51. 51.
    Wang, R., Li, J., Du, M., et al.: Transition of spatiotemporal patterns in neuronal networks with chemical synapses. Commun. Nonlinear Sci. Numer. Simul. 40, 80–88 (2016)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Qin, H., Wang, C., Cai, N., et al.: Field coupling-induced pattern formation in two-layer neuronal network. Physica A 501, 141–152 (2018)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Guo, S., Xu, Y., Wang, C., et al.: Collective response, synapse coupling and field coupling in neuronal network. Chaos Solitons Fractals 105, 120–127 (2017)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Lv, M., Ma, J., Yao, Y.G., et al.: Synchronization and wave propagation in neuronal network under field coupling. Sci. China Technol. Sci. 62(3), 448–457 (2019)CrossRefGoogle Scholar
  55. 55.
    Ma, J., Wu, F., Alsaedi, A., et al.: Crack synchronization of chaotic circuits under field coupling. Nonlinear Dyn. 93, 2057–2069 (2018)CrossRefGoogle Scholar
  56. 56.
    Xu, Y., Jia, Y., Ma, J., et al.: Collective responses in electrical activities of neurons under field coupling. Sci. Rep. 8, 1349 (2018)CrossRefGoogle Scholar
  57. 57.
    Ruth, M., Hannon, B.: Fitzhugh–Nagumo Neuron Model. Modeling Dynamic Biological Systems, pp. 82–86. Springer, New York (1997)CrossRefGoogle Scholar
  58. 58.
    Yao, Z., Ma, J., Yao, Y.G., et al.: Synchronization realization between two nonlinear circuits via an induction coil coupling. Nonlinear Dyn. 96, 205–217 (2019)CrossRefGoogle Scholar
  59. 59.
    Kyprianidis, I.M., Papachristou, V., Stouboulos, I.N., et al.: Dynamics of coupled Chaotic Bonhoeffer-van der Pol oscillators. WSEAS Trans. Syst. 11, 516–526 (2012)Google Scholar
  60. 60.
    FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)CrossRefGoogle Scholar
  61. 61.
    Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109–2112 (1998)CrossRefGoogle Scholar
  62. 62.
    Ren, G., Xue, Y., Li, Y., et al.: Field coupling benefits signal exchange between Colpitts systems. Appl. Math. Comput. 342, 45–54 (2019)MathSciNetGoogle Scholar
  63. 63.
    Wei, X., Wu, X., Chen, S., et al.: Cooperative epidemic spreading on a two-layered interconnected network. SIAM J. Appl. Dyn. Syst. 17(2), 1503–1520 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Liu, J., Mei, G., Wu, X., et al.: Robust reconstruction of continuously time-varying topologies of weighted networks. IEEE Trans. Circuits Syst. I 65(9), 2970–2982 (2018)MathSciNetCrossRefGoogle Scholar
  65. 65.
    Wei, J., Wu, X., Lu, J.A., et al.: Synchronizability of duplex regular networks. EPL 120(2), 20005 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of PhysicsLanzhou University of TechnologyLanzhouChina
  2. 2.School of Mechanical and Electronical EngineeringLanzhou University of TechnologyLanzhouChina

Personalised recommendations