Advertisement

An effective numerical method for solving nonlinear variable-order fractional functional boundary value problems through optimization technique

  • H. HassaniEmail author
  • J. A. Tenreiro Machado
  • Z. Avazzadeh
Original paper
  • 59 Downloads

Abstract

An optimization method standing on a new basis formed by the transcendental Bernstein series (TBS) is proposed. The TBS includes the unknown free coefficients and control parameters for solving nonlinear variable-order fractional functional boundary value problems (NV-FFBVP). The corresponding operational matrices for variable-order fractional derivatives are derived for expanding the solution by means of TBS. The TBS is a generalization of the Bernstein polynomials (BP) and represent a superset of BP. In the particular cases where all the control parameters are zero, the TBS method is equivalent to the BP method. The proposed technique reduces the NV-FFBVP to a system of algebraic equations and, subsequently, to the problem of finding the free coefficients and control parameters using an optimization technique. Several numerical results reveal the computational performance and reliability of the method.

Keywords

Nonlinear variable-order fractional functional boundary value problems Transcendental Bernstein series Variable-order fractional operational matrix Optimization method Control parameters 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Tavares, D., Almeida, R., Torres, D.F.M.: Caputo derivatives of fractional variable order: numerical approximations. Commun. Nonlinear Sci. Numer. Simul. 35, 69–87 (2016)MathSciNetGoogle Scholar
  2. 2.
    Zhao, X., Sun, Z.Z., Karniadakis, G.E.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Integr. Trans. Spec. Func. 1(4), 277–300 (1993)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Lorenzo, C.F., Hartley, T.T.: Initialized fractional calculus. Int. J. Appl. Math. 3(3), 249–265 (2000)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Momani, S., Odibat, Z.: Generalized differential transform method for solving a space and time-fractional diffusion-wave equation. Phys. Lett. A. 370, 379–87 (2007)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Coimbra, C.F.M.: Mechanics with variable-order differential operators. Ann. Phys. 12(11–12), 692–703 (2003)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Samko, S.G.: Fractional integration and differentiation of variable order. Anal. Math. 21, 213–36 (1995)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Pedro, H.T.C., Kobayashi, M.H., Pereira, J.M.C., Coimbra, C.F.M.: Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J. Vib. Control. 14, 1569–1672 (2008)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Ramirez, L.E.S., Coimbra, C.: On the variable order dynamics of the nonlinear wake caused by a sedimenting particle. Physica D 240, 1111–1118 (2011)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Sun, H., Chen, W., Wei, H., Chen, Y.: A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 193, 185–192 (2011)Google Scholar
  11. 11.
    Shyu, J.J., Pei, S.C., Chan, C.H.: An iterative method for the design of variable fractional-order FIR differintegrators. Signal Process. 89(3), 320–327 (2009)zbMATHGoogle Scholar
  12. 12.
    Coimbra, C.: Mechanics with variable-order differential operators. Ann. Phys. 12(11–12), 692–703 (2003)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Lorenzo, C., Hartley, T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Zhang, H., Liu, F., Zhuang, P., Turner, I., Anh, V.: Numerical analysis of a new space-time variable fractional order advection-dispersion equation. Appl. Math. Comput. 242, 541–550 (2014)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Zhang, S.: Existence result of solutions to differential equations of variable-order with nonlinear boundary value conditions. Commun. Nonlinear Sci. Numer. Simul. 18, 3289–3297 (2013)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Razminia, A., Dizaji, A.F., Majd, V.J.: Solution existence for non-autonomous variable-order fractional differential equations. Math. Comput. Model. 55, 1106–1117 (2012)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Zhang, H., Liu, F., Phanikumar, M.S., Meerschaert, M.M.: A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model. Comput. Math. Appl. 66, 693–701 (2013)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Yang, J., Yao, H., Wu, B.: An efficient numerical method for variable order fractional functional differential equation. Appl. Math. Lett. 76, 221–226 (2018)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Zaky, M.A., Ezz-Eldien, S.S., Doha, E.H., Machado, J.A.T., Bhrawy, A.H.: An efficient operational matrix technique for multidimensional variable-order time fractional diffusion equations. J. Comput. Nonlinear Dyn. 11(6), 061002–8 (2016)Google Scholar
  20. 20.
    Moghaddam, B.P., Machado, J.A.T.: Extended algorithms for approximating variable order fractional derivatives with applications. J. Sci. Comput. 71(3), 1351–1374 (2017)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Tayebi, A., Shekari, Y., Heydari, M.H.: A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation. J. Comput. Phys. 340, 655–669 (2017)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Dahaghin, MSh, Hassani, H.: An optimization method based on the generalized polynomials for nonlinear variable-order time fractional diffusion-wave equation. Nonlinear Dyn. 88(3), 1587–1598 (2017)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Li, X., Wu, B.: A numerical technique for variable fractional functional boundary value problems. Appl. Math. Lett. 43, 108–113 (2015)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Li, X., Wu, B.: A new reproducing kernel method for variable order fractional boundary value problems for functional differential equations. Appl. Math. Lett. 311, 387–393 (2017)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Jia, Y.T., Xu, M.Q., Lin, Y.Z.: A numerical solution for variable order fractional functional differential equation. Appl. Math. Lett. 64, 125–130 (2017)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Liu, J., Li, X., Hu, X.: A RBF-based differential quadrature method for solving two-dimensional variable-order time fractional advection-diffusion equation. J. Comput. Phys. 384, 222–238 (2019)MathSciNetGoogle Scholar
  27. 27.
    Hassani, H., Avazzadeh, Z., Tenreiro Machado, J.A.: Numerical approach for solving variable-order space-time fractional telegraph equation using transcendental Bernstein series. Eng Comput. (2019).  https://doi.org/10.1007/s00366-019-00736-x Google Scholar
  28. 28.
    Zhao, T., Mao, Z., Karniadakis, G.E.: Multi-domain spectral collocation method for variable-order nonlinear fractional differential equations. Comput. Methods Appl. Mech. Eng. 348, 377–395 (2019)MathSciNetGoogle Scholar
  29. 29.
    Bhrawy, A.H., Zaky, M.A.: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 80(1), 101–116 (2016)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J. Comput. Phys. 80(1), 312–338 (2015)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Bhrawy, A.H., Zaky, M.A.: Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dyn. 85(3), 1815–1823 (2016)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Mokhtary, P., Ghoreishi, F., Srivastava, H.M.: The Müntz–Legendre Tau method for fractional differential equations. Appl. Math. Model. 40(2), 671–684 (2016)MathSciNetGoogle Scholar
  33. 33.
    Ateş, I., Zegeling, P.A.: A homotopy perturbation method for fractional-order advection-diffusion-reaction boundary-value problems. Appl. Math. Model. 47, 425–441 (2017)MathSciNetGoogle Scholar
  34. 34.
    Reutskiy, S.Y.: A new semi-analytical collocation method for solving multi-term fractional partial differential equations with time variable coefficients. Appl. Math. Model. 45, 238–254 (2017)MathSciNetGoogle Scholar
  35. 35.
    Liu, Y., Fang, Z., Li, H., He, S.: A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 243, 703–717 (2014)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Shen, S., Liu, F., Chen, J., urner, I.T., Anh, V.: Numerical techniques for the variable order time fractional diffusion equation. Appl. Math. Comput. 218, 10861–10870 (2012)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Garg, M., Manohar, P.: Matrix method for numerical solution of space-time fractional diffusion-wave equations with three space variables. Afr. Mat. 25(1), 161–181 (2014)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Sweilam, N.H., Khader, M.M., Almarwm, H.M.: Numerical studies for the variable-order nonlinear fractional wave equation. Fractals Calc. Appl. Anal. 15(4), 669–683 (2012)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Sun, H., Chen, W., Li, C., Chen, Y.: Finite difference schemes for variable-order time fractional diffusion equation. Int. J. Bifurc. Chaos. 22(4), 1250085 (2012) MathSciNetzbMATHGoogle Scholar
  40. 40.
    Zhung, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47(3), 1760–1781 (2009)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Chen, Y.M., Wei, Y.Q., Liu, D.Y., Yu, H.: Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets. Appl. Math. Lett. 46, 83–88 (2015)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Keshi, F.K., Moghaddam, B.P., Aghili, A.: A numerical approach for solving a class of variable-order fractional functional integral equations. Compt. Appl. Math. 37(4), 4821–4834 (2018)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Li, Z., Wang, H., Xiao, R., Yang, S.: A variable-order fractional differential equation model of shape memory polymers. Chaos Solitons Fractals 102, 473–485 (2017)MathSciNetGoogle Scholar
  44. 44.
    Almeida, R., Bastos, N.R.O.: A numerical method to solve higher-order fractional differential equations. Mediterr. J. Math. 13(3), 1339–1352 (2016)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Chen, Y., Liu, L., Li, B., Sun, Y.: Numerical solution for the variable order linear cable equation with Bernstein polynomials. Appl. Math. Comput. 238, 329–341 (2014)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Asgari, M., Ezzati, R.: Using operational matrix of two-dimensional Bernstein polynomials for solving two-dimensional integral equations of fractional order. Appl. Math. Comput. 307, 290–298 (2017)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Javadi, Sh, Babolian, E., Taheri, Z.: Solving generalized pantograph equations by shifted orthonormal Bernstein polynomials. J. Comput. Appl. Math. 303, 1–14 (2016)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Hesameddini, E., Shahbazi, M.: Solving multipoint problems with linear Volterra–Fredholm integro-differential equations of the neutral type using Bernstein polynomials method. Appl. Numer. Math. 136, 122–138 (2019)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Miclăuş, D., Pişcoran, L.I.: A new method for the approximation of integrals using the generalized Bernstein quadrature formula. Appl. Math. Comput. 340, 146–155 (2019)MathSciNetGoogle Scholar
  50. 50.
    Rostamy, D., Alipour, M., Jafari, H., Baleanu, D.: Solving multi-term orders fractional differential equations by operational matrices of BPs with convergence analysis. Roman. Rep. Phys. 65(2), 334–349 (2013)Google Scholar
  51. 51.
    Chen, Y., Yi, M., Chen, C., Yu, C.: Bernstein polynomials method for fractional convection-diffusion equation with variable coefficients. CMES Comput. Model. Eng. Sci. 83, 639–654 (2012)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Behiry, S.H.: Solution of nonlinear Fredholm integro-differential equations using a hybrid of block pulse functions and normalized Bernstein polynomials. J. Comput. Appl. Math. 260, 258–265 (2014)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Wang, H., Zheng, X.: Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 475(2), 1778–1802 (2019)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Liu, J., Li, X., Hu, X.: A RBF-based differential quadrature method for solving two-dimensional variable-order time fractional advection-diffusion equation. J. Comput. Phys. 384, 222–238 (2019)MathSciNetGoogle Scholar
  55. 55.
    Shekari, Y., Tayebi, A., Heydari, M.H.: A meshfree approach for solving 2D variable-order fractional nonlinear diffusion-wave equation. Comput. Method. Appl. Mech. Eng. 350, 154–168 (2019)MathSciNetGoogle Scholar
  56. 56.
    Patrício, M.F.S., Ramos, H., Patrício, M.: Solving initial and boundary value problems of fractional ordinary differential equations by using collocation and fractional powers. J. Comput. Appl. Math. 345, 348–359 (2019)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Malesz, W., Macias, M., Sierociuk, D.: Analytical solution of fractional variable order differential equations. J. Comput. Appl. Math. 348, 214–236 (2019)MathSciNetzbMATHGoogle Scholar
  58. 58.
    Zhou, Y., Ionescu, C., Tenreiro Machado, J.A.: Fractional dynamics and its applications. Nonlinear Dyn. 80(4), 1661–1664 (2015)MathSciNetGoogle Scholar
  59. 59.
    Chang, S.H.: Numerical solution of Troesch’s problem by simple shooting method. Appl. Math. Comput. 216, 3303–3306 (2010)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Singh, R., Garg, H., Guleria, V.: Haar wavelet collocation method for Lane-Emden equations with Dirichlet, Neumann and Neumann–Robin boundary conditions. J. Comput. Appl. Math. 346, 150–161 (2019)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Zahra, W.K., Van Daele, M.: Discrete spline methods for solving two point fractional Bagley–Torvik equation. Appl. Math. Comput. 296, 42–56 (2017)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Yang, L., Chen, H.: Unique positive solutions for fractional differential equation boundary value problems. Appl. Math. Lett. 23, 1095–1098 (2010)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Kreyszig, E.: Introductory functional analysis with applications. Wiley, London (1978)zbMATHGoogle Scholar
  64. 64.
    Feng, X., Mei, L., He, G.: An efficient algorithm for solving Troesch’s problem. Appl. Math. Comput. 189, 500–507 (2007)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Deeba, E., Khuri, S.A., Xie, S.: An algorithm for solving boundary value problems. J. Comput. Phys. 159(2), 125–138 (2000)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • H. Hassani
    • 1
    Email author
  • J. A. Tenreiro Machado
    • 2
  • Z. Avazzadeh
    • 3
  1. 1.Department of Applied Mathematics, Faculty of Mathematical SciencesShahrekord UniversityShahrekordIran
  2. 2.Department of Electrical EngineeringInstitute of Engineering, Polytechnic of PortoPortoPortugal
  3. 3.School of Mathematical SciencesNanjing Normal UniversityNanjingChina

Personalised recommendations