Advertisement

Enhanced global flower pollination algorithm for parameter identification of chaotic and hyper-chaotic system

  • Yang Chen
  • DeChang PiEmail author
  • Bi Wang
Original Paper
  • 40 Downloads

Abstract

The problem of system parameter identification is a fundamental problem in the field of nonlinear science, which can be described as a multidimensional optimization problem. In this paper, an enhanced global flower pollination algorithm (GFPA) is proposed for parameter identification of chaotic and hyper-chaotic systems. The motion trajectory of the flower pollination algorithm is analyzed for the first time, and the equation of the algorithm exploration phase is improved by the chaotic mapping method to ensure the convergence of the algorithm in the exploration phase. In addition, in order to improve the convergence speed of the algorithm, the update method of the exploitation phase is reset by using the best information to guide the searching. Through analysis, the proposed new algorithm can guarantee the convergence of the algorithm without increasing the time complexity. Finally, we identify and validate the system of the Lorenz, Rössler, Chen and the system of the Rössler hyper-chaotic, Chen hyper-chaotic. The experimental results show that GFPA has better identification effect.

Keywords

Flower pollination algorithm Chaotic system Hyper-chaotic system Parameter identification Optimization problem 

List of symbols

X

State vector of the system

\(\dot{X}\)

A n-dimensional chaotic system

\(\tilde{X}\)

State vector of the system to be identified

\(\tilde{\dot{X}}\)

The system to be identified

\(X_0\)

Initial state vector of the system

\(\theta _0\)

Actual sequence of parameters

\(\theta \)

Estimate value for the system identification

M

Length of the output sequence obtained from the operation of the real chaotic system

x

Decision variables in optimization algorithms

Notes

Funding

This work was supported by Nation Natural Science Foundation of China (U1433116), the Fundamental Research Funds for the Central Universities (NZ2013306) and Science and Technology Research Project of Jiangxi Education Department (GJJ180442)

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    Chen, Z., Yuan, X., Yuan, Y., et al.: Parameter identification of chaotic and hyper-chaotic systems using synchronization-based parameter observer. IEEE Trans. Circuits Syst. I: Regul. Pap. 63(9), 1464–1475 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Yue, W., Zhou, Y., Long, B.: Discrete wheel-switching chaotic system and applications. IEEE Trans. Circuits Syst. I: Regul. Pap. 61(12), 3469–3477 (2017)Google Scholar
  3. 3.
    Shekofteh, Y., Sajad, J., Rajagopal, K.: Cost function based on hidden Markov models for parameter estimation of chaotic systems. Soft Comput. (2018).  https://doi.org/10.1007/s00500-018-3129-6 Google Scholar
  4. 4.
    Wan, L., Liu, J., Lu, Z.R.: Incremental response sensitivity approach for parameter identification of chaotic and hyper-chaotic systems. Nonlinear Dyn. 89(1), 153–167 (2017)CrossRefGoogle Scholar
  5. 5.
    Shemyakin, V., Haario, H.: Online identification of large-scale chaotic system. Nonlinear Dyn. 93(2), 961–975 (2018)CrossRefGoogle Scholar
  6. 6.
    Vargas, T.A.R., Witold, P., Elder, M.H.: Improved learning algorithm for two-layer neural networks for identification of nonlinear systems. Neurocomputing 329, 86–96 (2019)CrossRefGoogle Scholar
  7. 7.
    Ho, W.H., Chou, J.H., Guo, C.Y.: Parameter identification of chaotic systems using improved differential evolution algorithm. Nonlinear Dyn. 61(1–2), 29–41 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lin, J., Chen, C.: Parameter estimation of chaotic systems by an oppositional seeker optimization algorithm. Nonlinear Dyn. 76(1), 509–517 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Pan, Q.K., Sang, H.Y., Duan, J.H., et al.: An improved fruit fly optimization algorithm for continuous function optimization problems. Knowl.-Based Syst. 62, 69–83 (2014)CrossRefGoogle Scholar
  10. 10.
    Chen, Y., Pi, D.: Novel fruit fly algorithm for global optimisation and its application to short-term wind forecasting. Connect. Sci. (2019).  https://doi.org/10.1080/09540091.2019.1573419 Google Scholar
  11. 11.
    Sun, J., Zhao, J., Wu, X., et al.: Parameter estimation for chaotic systems with a drift particle swarm optimization method. Phys. Lett. A 374(28), 2816–2822 (2010)CrossRefzbMATHGoogle Scholar
  12. 12.
    Modares, H., Alfi, A., Fateh, M.M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization. Expert Syst. Appl. 37(5), 3714–3720 (2010)CrossRefGoogle Scholar
  13. 13.
    Peng, H., Li, L., Yang, Y., et al.: Parameter estimation of dynamical systems via a chaotic ant swarm. Phys. Rev. E.81(1), 016207 (2010)Google Scholar
  14. 14.
    Anh, H.P.H., Son, N.N., Van, K.C., et al.: Parameter identification using adaptive differential evolution algorithm applied to robust control of uncertain nonlinear systems. Appl. Soft Comput. 71, 672–684 (2018)CrossRefGoogle Scholar
  15. 15.
    Lazzús, J.A., Rivera, M., López-Caraballo, C.H.: Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm. Phys. Lett. A 380(11), 1164–1171 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Li, X., Yin, M.: Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm. Nonlinear Dyn. 77(1), 61–71 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Chen, F., Ding, Z., Lu, Z., et al.: Parameters identification for chaotic systems based on a modified Jaya algorithm. Nonlinear Dyn. 94(4), 2307–2326 (2018)CrossRefGoogle Scholar
  18. 18.
    Li, C., Zhou, J., Xiao, J., et al.: Parameters identification of chaotic system by chaotic gravitational search algorithm. Chaos Solitons Fract. 45(4), 539–547 (2012)CrossRefGoogle Scholar
  19. 19.
    Ahandani, M.A., Ghiasi, A.R., Kharrati, H.: Parameter identification of chaotic systems using a shuffled backtracking search optimization algorithm. Soft Comput. 22(24), 8317–8339 (2018)CrossRefGoogle Scholar
  20. 20.
    Wang, J., Zhou, B., Zhou, S.: An improved cuckoo search optimization algorithm for the problem of chaotic systems parameter estimation. Comput. Intell. Neurosci. (2016).  https://doi.org/10.1155/2016/2959370 Google Scholar
  21. 21.
    Wang, J., Zhou, B.: A hybrid adaptive cuckoo search optimization algorithm for the problem of chaotic systems parameter estimation. Neural Comput. Appl. 27(6), 1511–1517 (2016)CrossRefGoogle Scholar
  22. 22.
    Mousavi, Y., Alfi, A.: Fractional calculus-based firefly algorithm applied to parameter estimation of chaotic systems. Chaos, Solitons Fract. 114, 202–215 (2018).  https://doi.org/10.1016/j.chaos.2018.07.004 CrossRefGoogle Scholar
  23. 23.
    Zhang, H., Li, B., Zhang, J., et al.: Parameter estimation of nonlinear chaotic system by improved TLBO strategy. Soft Comput. 20(12), 4965–4980 (2016)CrossRefGoogle Scholar
  24. 24.
    Jiang, Q., Wang, L., Hei, X.: Parameter identification of chaotic systems using artificial raindrop algorithm. J. Comput. Sci. 8, 20–31 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Xu, S., Wang, Y., Liu, X.: Parameter estimation for chaotic systems via a hybrid flower pollination algorithm. Neural Comput. Appl. 30(8), 2607–2623 (2018)CrossRefGoogle Scholar
  26. 26.
    Yang, X.S.: Flower pollination algorithm for global optimization. In: Proceedings International Conference on Unconventional Computing and Natural Computation. pp. 240–249 (2012)Google Scholar
  27. 27.
    Yang, X.S., Karamanoglu, M., He, X.: Flower pollination algorithm: a novel approach for multiobjective optimization. Eng. Optim. 46(9), 1222–1237 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Draa, A.: On the performances of the flower pollination algorithm—qualitative and quantitative analyses. Appl. Soft Comput. 34, 349–371 (2015).  https://doi.org/10.1016/j.asoc.2015.05.015 CrossRefGoogle Scholar
  29. 29.
    Salgotra, R., Singh, U.: Application of mutation operators to flower pollination algorithm. Expert Syst. Appl. 79, 112–129 (2017).  https://doi.org/10.1016/j.eswa.2017.02.035 CrossRefGoogle Scholar
  30. 30.
    Nabil, E.: A modified flower pollination algorithm for global optimization. Expert Syst. Appl. 57, 192–203 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Computer Science and EngineeringSoutheast UniversityNanjingChina

Personalised recommendations