Advertisement

Logistic equation with continuously distributed lag and application in economics

  • Vasily E. TarasovEmail author
  • Valentina V. Tarasova
Original Paper
  • 29 Downloads

Abstract

In this paper, we consider nonlinear dynamics with continuously distributed lags. A generalization of the logistic equation, its solution and economic models of logistic growth are proposed by taking into account continuously distributed lags. The logistic integro-differential equations are considered for exponential and gamma distributions of delay time. The integro-differential equations of the proposed model of logistic growth with distributed lag are represented by differential equations with derivatives of integer orders. The solution of the logistic integro-differential equations with exponentially distributed lag is obtained. Characteristic properties of nonlinear dynamics with continuously distributed lags are described. The main difference between dynamics with lag from standard dynamics without delay lies in the existence of a cutoff threshold of growth. We propose the principle of growth clipping by distributed lag, which states that the distributed lag can lead to the emergence of the cutoff threshold, below which growth is replaced by decline. For economy, this means that for production growth, the starting production should exceed a certain minimum (critical) value of production.

Keywords

Logistic equation Translation operator Distributed lag Memory Integro-differential operator Probability distribution Exponential distribution Gamma distribution 

Mathematics Subject Classification

91B55 Economic dynamics 47G20 Integro-differential operators 26A33 Fractional derivatives and integrals 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

  1. 1.
    Verhulst, P.F.: Mathematical researches into the law of population growth increase. Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres de Bruxelles. 18, 1–42 (1845). (in French)Google Scholar
  2. 2.
    Kwasnicki, W.: Logistic growth of the global economy and competitiveness of nations. Technol. Forecast. Soc. Change 80(1), 50–76 (2013)CrossRefGoogle Scholar
  3. 3.
    Girdzijauskas, S., Streimikiene, D., Mialik, A.: Economic growth, capitalism and unknown economic paradoxes. Sustainability 4, 2818–2837 (2012)CrossRefGoogle Scholar
  4. 4.
    Tarasova, V.V., Tarasov, V.E.: Logistic map with memory from economic model. Chaos Solitons Fractals 95, 84–91 (2017).  https://doi.org/10.1016/j.chaos.2016.12.012. (arXiv:1712.09092)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fick, E., Fick, M., Hausmann, G.: Logistic equation with memory. Phys. Rev. A 44(4), 2469–2473 (1991)MathSciNetCrossRefGoogle Scholar
  6. 6.
    El-Sayed, A.M.A., El-Mesiry, A.E.M., El-Saka, H.A.A.: On the fractional-order logistic equation. Appl. Math. Lett. 20(7), 817–823 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    West, B.J.: Exact solution to fractional logistic equation. Phys. A Stat. Mech. Appl. 429, 103–108 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Area, I., Losada, J., Nieto, J.J.: A note on the fractional logistic equation. Phys. A Stat. Mech. Appl. 444(C), 182–187 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Tarasov, V.E., Tarasova, V.V.: Accelerator and multiplier for macroeconomic processes with memory. IRA Int. J. Manag. Soc. Sci. 9(3), 86–125 (2017).  https://doi.org/10.21013/jmss.v9.v3.p1 Google Scholar
  10. 10.
    Tarasova, V.V., Tarasov, V.E.: Concept of dynamic memory in economics. Commun. Nonlinear Sci. Numer. Simul. 55, 127–145 (2018).  https://doi.org/10.1016/j.cnsns.2017.06.032. (arXiv:1712.09088)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Tarasov, V.E., Tarasova, V.V.: Criterion of existence of power-law memory for economic processes. Entropy 20(6), (2018) Article ID 414. 24 p.  https://doi.org/10.3390/e20060414
  12. 12.
    Allen, R.G.D.: Mathematical Economics, 2nd edn. Macmillan, London (1960). (First Edition 1956) 812 p. ISBN: 978-1-349-81547-0.  https://doi.org/10.1007/978-1-349-81547-0
  13. 13.
    Allen, R.G.D.: Mathematical Economics. Andesite Press, p. 568 (2015). ISBN: 978-1297569906Google Scholar
  14. 14.
    Allen, R.G.D.: Macro-economic Theory, A Mathematical Treatment, p. 420. Macmillan, London (1968)Google Scholar
  15. 15.
    Phillips, A.W.: Stabilisation policy in a closed economy. Econ. J. 64(254), 290–323 (1954).  https://doi.org/10.2307/2226835 CrossRefGoogle Scholar
  16. 16.
    Phillips, A.W.H.: Collected Works in Contemporary Perspective. In: Leeson, R. (ed.). Cambridge University Press, Cambridge, p. 515 (2000). ISBN: 9780521571357Google Scholar
  17. 17.
    Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015).  https://doi.org/10.12785/pfda/010201 Google Scholar
  18. 18.
    Caputo, M., Fabrizio, M.: Applications of new time and spatial fractional derivatives with exponential kernels. Prog. Fract. Differ. Appl. 2(1), 1–11 (2016).  https://doi.org/10.18576/pfda/020101 CrossRefGoogle Scholar
  19. 19.
    Ortigueira, M.D., Tenreiro, Machado J.: A critical analysis of the Caputo–Fabrizio operator. Commun. Nonlinear Sci. Numer. Simul. 59, 608–611 (2018).  https://doi.org/10.1016/j.cnsns.2017.12.001 MathSciNetCrossRefGoogle Scholar
  20. 20.
    Tarasov, V.E.: No nonlocality. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 62, 157–163 (2018).  https://doi.org/10.1016/j.cnsns.2018.02.019. (arXiv:1803.00750)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Tarasov, V.E.: Caputo-Fabrizio operator in terms of integer derivatives: memory or distributed lag? Comput. Appl. Math. 38, 113 (2019).  https://doi.org/10.1007/s40314-019-0883-8 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Tarasova, V.V., Tarasov, V.E.: Economic interpretation of fractional derivatives. Prog. Fract. Differ. Appl. 3(1), 1–7 (2017).  https://doi.org/10.18576/pfda/030101 CrossRefGoogle Scholar
  23. 23.
    Tarasov, V.E., Tarasova, V.V.: Macroeconomic models with long dynamic memory: fractional calculus approach. Appl. Math. Comput. 338, 466–486 (2018).  https://doi.org/10.1016/j.amc.2018.06.018 MathSciNetGoogle Scholar
  24. 24.
    Tarasova, V.V., Tarasov, V.E.: Dynamic intersectoral models with power-law memory. Commun. Nonlinear Sci. Numer. Simul. 54, 100–117 (2018).  https://doi.org/10.1016/j.cnsns.2017.05.015 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Tarasova, V.V., Tarasov, V.E.: Fractional dynamics of natural growth and memory effect in economics. Eur. Res. 12(23), 30–37 (2016).  https://doi.org/10.20861/2410-2873-2016-23-004 Google Scholar
  26. 26.
    Tarasova, V.V., Tarasov, V.E.: Economic growth model with constant pace and dynamic memory. Probl. Mod. Sci. Educ. 2(84), 40–45 (2017).  https://doi.org/10.20861/2304-2338-2017-84-001 Google Scholar
  27. 27.
    Tarasov, V.E., Tarasova, V.V.: Time-dependent fractional dynamics with memory in quantum and economic physics. Ann. Phys. 383, 579–599 (2017).  https://doi.org/10.1016/j.aop.2017.05.017 MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications, p. 1006. Gordon and Breach, New York (1993)zbMATHGoogle Scholar
  29. 29.
    Kiryakova, V.: Generalized Fractional Calculus and Applications. Longman and J. Wiley, New York, p. 360 (1994). ISBN 9780582219779Google Scholar
  30. 30.
    Podlubny, I.: Fractional Differential Equations, p. 340. Academic Press, San Diego (1998)zbMATHGoogle Scholar
  31. 31.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, p. 540. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  32. 32.
    Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin, p. 247 (2010).  https://doi.org/10.1007/978-3-642-14574-2
  33. 33.
    Tarasov, V.E., Tarasova, S.S.: Fractional and integer derivatives with continuously distributed lag. Commun. Nonlinear Sci. Numer. Simul. 70, 125–169 (2019).  https://doi.org/10.1016/j.cnsns.2018.10.014 MathSciNetCrossRefGoogle Scholar
  34. 34.
    Tarasov, V.E., Tarasova, V.V.: Phillips model with exponentially distributed lag and power-law memory. Comput. Appl. Math. (2018). Accepted 2018.09.24Google Scholar
  35. 35.
    Tejado, I., Valerio, D., Valerio, N.: Fractional calculus in economic growth modelling. The Spanish case. In: Moreira, A.P., Matos, A., Veiga, G. (eds.) CONTROLO’2014—Proceedings of the 11th Portuguese Conference on Automatic Control. Volume 321 of the Series Lecture Notes in Electrical Engineering. Springer, pp. 449–458 (2015)  https://doi.org/10.1007/978-3-319-10380-8_43
  36. 36.
    Tejado, I., Valerio, D., Valerio, N.: Fractional calculus in economic growth modeling. The Portuguese case. In: Conference: International Conference on Fractional Differentiation and its Applications (FDA’14) (2014).  https://doi.org/10.1109/ICFDA.2014.6967427
  37. 37.
    Tejado, I., Valerio, D., Perez, E., Valerio, N.: Fractional calculus in economic growth modelling: the Spanish and Portuguese cases. Int. J. Dyn. Control 5(1), 208–222 (2015).  https://doi.org/10.1007/s40435-015-0219-5 MathSciNetCrossRefGoogle Scholar
  38. 38.
    Tejado, I., Valerio, D., Perez, E., Valerio, N.: Fractional calculus in economic growth modelling: the economies of France and Italy. In: Spasic, D.T., Grahovac, N., Zigic, M., Rapaic, M., Atanackovic, T.M. (eds.) Proceedings of International Conference on Fractional Differentiation and its Applications. Novi Sad, Serbia, July 18–20. Novi Sad, pp. 113–123 (2016)Google Scholar
  39. 39.
    Tejado, I., Perez, E., Valerio, D.: Fractional calculus in economic growth modelling of the group of seven. SSRN Electron. J. (2018).  https://doi.org/10.2139/ssrn.3271391 Google Scholar
  40. 40.
    Tejado, I., Perez, E., Valerio, D.: Economic growth in the European Union modelled with fractional derivatives: first results. Bull. Pol. Acad. Sci. Tech. Sci. 66(4), 455–465 (2018).  https://doi.org/10.24425/124262 Google Scholar
  41. 41.
    Luo, D., Wang, J.R., Feckan, M.: Applying fractional calculus to analyze economic growth modelling. J. Appl. Math. Stat. Inform. 14(1), 25–36 (2018).  https://doi.org/10.2478/jamsi-2018-0003 CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Faculty of EconomicsLomonosov Moscow State UniversityMoscowRussia
  3. 3.YandexMoscowRussia

Personalised recommendations