Magnetoelastic axisymmetric multi-modal resonance and Hopf bifurcation of a rotating circular plate under aerodynamic load

  • Y. D. HuEmail author
  • W. Q. Li
Original Paper


In this article, an investigation of magnetoelastic axisymmetric multi-mode interaction and Hopf bifurcations of a circular plate rotating in air and uniform transverse magnetic fields is presented. The expressions of electromagnetic forces and an empirical aerodynamic model are applied in the derivation of the dynamical equations, through which a set of nonlinear differential equations for axisymmetric forced oscillation of the clamped circular plate are deduced. The method of multiple scales combined with the polar coordinate transformation is employed to solve the differential equations and achieve the phase–amplitude modulation equations for the interaction among the first three modes under primary resonance. Then, the frequency response equation for the single-mode vibration, the steady-state response equations for three-mode resonance and the corresponding Jacobian matrix are obtained by means of the modulation equations. Numerical examples are presented to show the dependence of amplitude solutions as a function of different parameters in the cases of single mode and three-mode response. Furthermore, a Hopf bifurcation can be found in three-mode equilibrium by choosing appropriate parameters, where a limit cycle occurs and then evolves into chaos after undergoing a series of period-doubling bifurcations.


Rotating conductive circular plate Magneto-aeroelasticity Primary and internal resonance Modal interaction Hopf bifurcation 



This project was supported by the National Natural Science Foundation of China (No. 11472239), Hebei Provincial Natural Science Foundation of China (No. A2015203023), Hebei Provincial Graduate Innovation Foundation of China (No. CXZZBS2018058) and Hebei Provincial Yanshan University Graduate Innovation Foundation of China (No. CXZS201908).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Chona, S., Jiang, Z.W., Shyu, Y.J.: Stability analysis of a 2” floppy disk drive system and the optimum design of the disk stabilizer. J. Vib. Acoust. 114(2), 283–286 (1992)Google Scholar
  2. 2.
    Hoska, H.C., Randall, S.: Self-excited vibrations of a flexible disk rotating on an air film above a surface. Acta Mech. 3, 115–127 (1992)Google Scholar
  3. 3.
    Renshaw, A.A., Mote, C.D.: Absence of one nodal diameter critical speed modes in an axisymmetric rotating disk. J. Appl. Mech. 59(3), 687–688 (1992)zbMATHGoogle Scholar
  4. 4.
    Renshaw, A.A., D’Angelo, C., Mote, C.D.: Aerodynamically excited vibration of a rotating disk. J. Sound Vib. 177(5), 577–590 (1994)zbMATHGoogle Scholar
  5. 5.
    Renshaw, A.A.: Critical speeds for floppy disks. J. Appl. Mech. 65(1), 116–120 (1998)Google Scholar
  6. 6.
    Kim, H.R., Renshaw, A.A.: Aeroelastic flutter of circular rotating disks: a simple predictive model. J. Sound Vib. 256(2), 227–248 (2002)Google Scholar
  7. 7.
    Yasuda, K., Torii, T., Shimizu, T.: Self-excited oscillations of a circular disk rotating in air. JSME Int. J. Ser. III. 35(3), 347–352 (1992)Google Scholar
  8. 8.
    Kim, B.C., Raman, A., Mote, C.D.: Prediction of aeroelastic flutter in a hard disk drive. J. Sound Vib. 238(2), 309–325 (2000)Google Scholar
  9. 9.
    Hansen, M.H., Raman, A., Mote, C.D.: Estimation of nonconservative aero-dynamic pressure leading to flutter of spinning disks. J. Fluids Struct. 15(1), 39–57 (2005)Google Scholar
  10. 10.
    Wang, X.Z., Huang, X.Y.: A simple modeling and experiment on dynamic stability of a disk rotating in air. J. Struct. Stab. Dyn. 8(1), 41–60 (2008)Google Scholar
  11. 11.
    Huang, X.Y., Wang, X., Yap, F.F.: Feedback control of rotating disk flutter in an enclosure. J. Fluids Struct. 19(7), 917–932 (2004)Google Scholar
  12. 12.
    Li, X.Y., Ding, H.J., Chen, W.Q.: Three-dimensional analytical solution for functionally graded magneto-electro-elastic circular plates subjected to uniform load. Compos. Struct. 83(4), 381–90 (2008)Google Scholar
  13. 13.
    Dai, H.L., Dai, T., Yang, L.: Free vibration of a FGPM circular plate placed in a uniform magnetic field. Meccanic 48(10), 2339–2347 (2013)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Hu, Y.D., Wang, T.: Nonlinear resonance of a rotating circular plate under static loads in magnetic field. Chin. J. Mech. Eng. 28(6), 1277–1284 (2015)Google Scholar
  15. 15.
    Hu, Y.D., Wang, T.: Nonlinear free vibration of a rotating circular plate under the static load in magnetic field. Nonlinear Dyn. 85(3), 1825–1835 (2016)MathSciNetGoogle Scholar
  16. 16.
    Hu, Y.D., Li, Z., Du, G.J., Wang, Y.N.: Magneto-elastic combination resonance of rotating circular plate with varying speed under alternating load. Int. J. Struct. Stab. Dyn. 18(3), 1850032 (2017)MathSciNetGoogle Scholar
  17. 17.
    Hu, Y.D., Piao, J.M., Li, W.Q.: Magneto-elastic dynamics and bifurcation of rotating annular plate. Chin. Phys. B 26(9), 269–279 (2017)Google Scholar
  18. 18.
    Hu, Y.D., Li, W.Q.: Study on primary resonance and bifurcation of a conductive circular plate rotating in air-magnetic fields. Nonlinear Dyn. 93(2), 671–687 (2018)Google Scholar
  19. 19.
    Touzé, C., Thomas, L.O., Chaigne, A.: Asymmetric non-linear forced vibrations of free-edge circular plates. Part I: theory. J. Sound Vib. 258(4), 649–676 (2002)Google Scholar
  20. 20.
    Touzé, C., Thomas, L.O., Chaigne, A.: Asymmetric non-linear forced vibrations of free-edge circular plates. Part II: experiments. J. Sound Vib. 265(5), 1075–1101 (2003)Google Scholar
  21. 21.
    Camier, C., Touzé, C., Thomas, O.: Non-linear vibrations of imperfect free-edge circular plates and shells. Euro. J. Mech. A-Solids 28(2), 500–515 (2009)zbMATHGoogle Scholar
  22. 22.
    Touzé, C., Thomas, O., Amabili, M.: Transition to chaotic vibrations for harmonically forced perfect and imperfect circular plates. Int. J. Nonlinear Mech. 46(1), 234–246 (2011)Google Scholar
  23. 23.
    Sridhar, S., Mook, D.T., Nayfeh, A.H.: Nonlinear resonances in the forced responses of plates. Part I: symmetric response of circular plates. J. Sound Vib. 41(3), 359–373 (1975)Google Scholar
  24. 24.
    Hadian, J., Nayfeh, A.H.: Modal interaction in circular plates. J. Sound Vib. 142(2), 279–292 (1990)MathSciNetGoogle Scholar
  25. 25.
    Chin, C.M., Nayfeh, A.H.: Three-to-one internal resonances in hinged-clamped beams. Nonlinear Dyn. 12(2), 129–154 (1997)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Chin, C.M., Nayfeh, A.H.: Three-to-one internal resonances in parametrically excited hinged-clamped beams. Nonlinear Dyn. 20(2), 131–158 (1999)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Feng, Z.H., Hu, H.Y.: Largest Lyapunov exponent and almost certain stability analysis of slender beams under a large linear motion of basement subject to narrowband parametric excitation. J Sound Vib. 257(4), 733–752 (2002)Google Scholar
  28. 28.
    Feng, Z.H., Hu, H.Y.: Principal parametric and three-to-one internal resonances of flexible beams undergoing a large linear motion. Acta Mech. Sinica 19(4), 355–364 (2003)Google Scholar
  29. 29.
    Sahoo, B., Panda, L.N., Pohit, G.: Two-frequency parametric excitation and internal resonance of a moving viscoelastic beam. Nonlinear Dyn. 82(4), 1721–1742 (2015)MathSciNetGoogle Scholar
  30. 30.
    Nowinski, J.L.: Nonlinear transverse vibrations of a spinning disk. J. Appl. Mech. 31(1), 72–78 (1961)Google Scholar
  31. 31.
    Liang, D.S., Wang, H.J., Chen, L.W.: Vibration and stability of rotating polar orthotropic annular disks subjected to a stationary concentrated transverse load. J. Sound. Vib. 250(5), 795–811 (2002)Google Scholar
  32. 32.
    Norouzi, H., Younesian, D.: Forced vibration analysis of spinning disks subjected to transverse loads. Int. J. Struct. Stab. Dyna. 15(3),1450049(2015)Google Scholar
  33. 33.
    Ambarcumian, S.A., Bagdasarin, G.E., Belubekian, M.V.: Magneto-elastic of thin shell and plate. Science, Moscow (1977)Google Scholar
  34. 34.
    Moon, F.C.: Magneto-Solid Mechanics. Wiley, New York (1984)Google Scholar
  35. 35.
    John, K.D.: Electromagnetic. McGraw-Hill, New York (1984)Google Scholar
  36. 36.
    Dowell, E.H.: Aeroelasticity of plates and shells. Noordhoff International Publishing, Leyden (1975)zbMATHGoogle Scholar
  37. 37.
    Chu, H.N.: Influence of large amplitudes on flexural vibrations of a thin circular cylindrical shell. J. Aerosp. Sci. 28(9), 685–692 (1961)MathSciNetGoogle Scholar
  38. 38.
    Reddy, J.N.: Theory and analysis of elastic plates and shell. Taylor & Francis, New York (2007)Google Scholar
  39. 39.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995)zbMATHGoogle Scholar
  40. 40.
    Korenev, B.G.: Bessel Functions and Their Applications. Taylor & Francis Inc, Landon and New York (2002)zbMATHGoogle Scholar
  41. 41.
    Leissa, A.W.: Vibration of Plates. United States Government Printing Office, Washington, D. C. (1969)Google Scholar
  42. 42.
    Joncs, D.G.: Handbook of Viscoelastic Vibration Damping. Wiley, New York (2001)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Civil Engineering and MechanicsYanshan UniversityQinhuangdaoChina
  2. 2.Hebei Key Laboratory of Mechanical Reliability for Heavy Equipments and Large StructuresYanshan UniversityQinhuangdaoChina

Personalised recommendations