Advertisement

Chaotic resonance in Hodgkin–Huxley neuron

  • Veli Baysal
  • Zehra Saraç
  • Ergin YilmazEmail author
Original Paper
  • 23 Downloads

Abstract

Chaotic Resonance (CR), whereby the response of a nonlinear system to a weak signal can be enhanced by the assistance of chaotic activities that can be intrinsic or extrinsic, has recently been studied widely. In this paper, the effects of extrinsic chaotic signal on the weak signal detection performance of the Hodgkin–Huxley neuron are examined via numerical simulation. The chaotic signal has been derived from Lorenz system and is injected to neuron as a current. Obtained results have revealed that the H–H neuron exhibits CR phenomenon depending on the chaotic current intensity. Also, we have found an optimal chaotic current intensity ensuring the best detection of the weak signal in H–H neuron via CR. In addition, we have calculated the maximal Lyapunov exponent to determine whether the H–H neuron is in chaotic regime. After determining the state of the neuron, we have shown that the H–H neuron can be able to detect the weak signal even if it is in the chaotic regime. Finally, we have investigated the effects of chaotic activity on the collective behavior of H–H neurons in small-world networks and have concluded that CR effect is a robust phenomenon which can be observed both in single neurons and neuronal networks.

Keywords

Chaotic resonance H–H neuron Lorenz system 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70(1), 223–287 (1998)Google Scholar
  2. 2.
    Russell, D.F., Wilkens, L.A., Moss, F.: Use of behavioural stochastic resonance by paddle fish for feeding. Nature 402(6759), 291–294 (1999)Google Scholar
  3. 3.
    Douglass, J.K., Wilkens, L., Pantazelou, E., Moss, F.: Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365(6444), 337–340 (1993)Google Scholar
  4. 4.
    Anishchenko, V.S., Neiman, A.B., Moss, F., Schimansky-Geier, L.: Uspekhi Fizicheskih Nauk. Sov. Phys. Usp. 42, 7 (1999)Google Scholar
  5. 5.
    McNamara, B., Wiesenfeld, K.: Theory of stochastic resonance. Phys. Rev. A 39(9), 4854–4869 (1989)Google Scholar
  6. 6.
    Palonpon, A., Amistoso, J., Holdsworth, J., Garcia, W., Saloma, C.: Measurement of weak transmittances by stochastic resonance. Opt. Lett. 23(18), 1480–1482 (1998)Google Scholar
  7. 7.
    Hänggi, P.: Stochastic resonance in biology how noise can enhance detection of weak signals and help improve biological information processing. ChemPhysChem 3(3), 285–290 (2002)Google Scholar
  8. 8.
    Wiesenfeld, K., Moss, F.: Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373(6509), 33–36 (1995)Google Scholar
  9. 9.
    Wiesenfeld, K., Jaramillo, F.: Minireview of stochastic resonance. Chaos 8(3), 539–548 (1998)Google Scholar
  10. 10.
    Longtin, A.: Stochastic resonance in neuron models. J. Stat. Phys. 70(1–2), 309–327 (1993)zbMATHGoogle Scholar
  11. 11.
    Moss, F., Ward, L.M., Sannita, W.G.: Stochastic resonance and sensory information processing: a tutorial and review of application. Clin. Neurophysiol. 115(2), 267–281 (2004)Google Scholar
  12. 12.
    Yasuda, H., Miyaoka, T., Horiguchi, J., Yasuda, A., Hänggi, P., Yamamoto, Y.: Novel class of neural stochastic resonance and error-free information transfer. Phys. Rev. Lett. 100(11), 118103–118106 (2008)Google Scholar
  13. 13.
    Yilmaz, E., Uzuntarla, M., Ozer, M., Perc, M.: Stochastic resonance in hybrid scale-free neuronal networks. Physica A 392(22), 5735–5741 (2013)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Collins, J.J., Imhoff, T.T., Grigg, P.: Noise-enhanced tactile sensation. Nature 383(6603), 770 (1996)Google Scholar
  15. 15.
    Russell, D.F., Wilkens, L.A., Moss, F.: Use of behavioural stochastic resonance by paddle fish for feeding. Nature 402(6759), 291–294 (1999)Google Scholar
  16. 16.
    Perc, M.: Stochastic resonance on excitable small-world networks via a pacemaker. Phys. Rev. E 76(6), 066203–6 (2007)Google Scholar
  17. 17.
    Bezrukov, S.M., Vodyanoy, I.: Noise-induced enhancement of signal transduction across voltage-dependent ion channels. Nature 378(6555), 362–364 (1995)Google Scholar
  18. 18.
    Schmid, G., Goychuk, I., Hänggi, P.: Stochastic resonance as a collective property of ion channel assemblies. EPL (Europhysics Letters) 56(1), 22–28 (2001)Google Scholar
  19. 19.
    Guo, D., Li, C.: Stochastic resonance in Hodgkin-Huxley neuron induced by unreliable synaptic transmission. J. Theor. Biol. 308, 105–114 (2012)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)MathSciNetGoogle Scholar
  21. 21.
    Landa, P.S., McClintock, P.V.: Vibrational resonance. J. Phys. A: Math. Gen. 33(45), L433 (2000)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Ullner, E., Zaikin, A., Garcıa-Ojalvo, J., Bascones, R., Kurths, J.: Vibrational resonance and vibrational propagation in excitable systems. Phys. Lett. A 312(5–6), 348–354 (2003)MathSciNetGoogle Scholar
  23. 23.
    Deng, B., Wang, J., Wei, X., Tsang, K.M., Chan, W.L.: Vibrational resonance in neuron populations. Chaos 20(1), 013113 (2010)Google Scholar
  24. 24.
    Yu, H., Wang, J., Liu, C., Deng, B., Wei, X.: Vibrational resonance in excitable neuronal systems. Chaos 21(4), 043101 (2011)Google Scholar
  25. 25.
    Stiefel, K.M., Englitz, B., Sejnowski, T.J.: Origin of intrinsic irregular firing in cortical interneurons. Proc. Natl. Acad. Sci. 110(19), 7886–7891 (2013)zbMATHGoogle Scholar
  26. 26.
    Fellous, J.M., Rudolph, M., Destexhe, A., Sejnowski, T.J.: Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience 122(3), 811–829 (2003)Google Scholar
  27. 27.
    Destexhe, A., Rudolph, M., Paré, D.: The high-conductance state of neocortical neurons in vivo. Nat. Rev. Neurosci. 4(9), 739–751 (2003)Google Scholar
  28. 28.
    Hansel, D., Mato, G.: Short-term plasticity explains irregular persistent activity in working memory tasks. J. Neurosci. 33(1), 133–149 (2013)Google Scholar
  29. 29.
    Ardid, S., Wang, X.J., Gomez-Cabrero, D., Compte, A.: Reconciling coherent oscillation with modulationof irregular spiking activity in selective attention: gamma-range synchronization between sensoryand executive cortical areas. J. Neurosci. 30(8), 2856–2870 (2010)Google Scholar
  30. 30.
    Doron, G., von Heimendahl, M., Schlattmann, P., Houweling, A.R., Brecht, M.: Spiking irregularity and frequency modulate the behavioral report of single-neuron stimulation. Neuron 81(3), 653–663 (2014)Google Scholar
  31. 31.
    Arbib, M.A., Fellous, J.M.: Emotions: from brain to robot. Trends. Cogn. Sci. 8(12), 554–561 (2004)Google Scholar
  32. 32.
    Freeman, W.J.: Evidence from human scalp electroencephalograms of global chaotic itinerancy. Chaos 13(3), 1067–1077 (2003)MathSciNetGoogle Scholar
  33. 33.
    Korn, H., Faure, P.: Is there chaos in the brain? II. Experimental evidence and related models. C. R. Biol. 326(9), 787–840 (2003)Google Scholar
  34. 34.
    El Boustani, S., Destexhe, A.: Brain dynamics at multiple scales: can one reconcile the apparent low-dimensional chaos of macroscopic variables with the seemingly stochastic behavior of single neurons? Int. J. Bifurc. Chaos 20(06), 1687–1702 (2010)MathSciNetGoogle Scholar
  35. 35.
    Hayashi, H., Ishizuka, S., Hirakawa, K.: Chaotic response of the pacemaker neuron. J. Phys. Soc. Jpn. 54(6), 2337–2346 (1985)Google Scholar
  36. 36.
    Freeman, W. J.: On the problem of anomalous dispersion in chaoto-chaotic phase transitions of neural masses, and its significance for the management of perceptual information in brains. In: Synergetics of cognition (pp. 126-143). Springer, Berlin (1990)Google Scholar
  37. 37.
    Freeman, W.J.: A proposed name for aperiodic brain activity: stochastic chaos. Neural Netw. 13(1), 11–13 (2000)Google Scholar
  38. 38.
    Freeman, W.J., Burke, B.C., Holmes, M.D.: Aperiodic phase re-setting in scalp EEG of beta-gamma oscillations by state transitions at alpha-theta rates. Hum. Brain Mapp. 19(4), 248–272 (2003)Google Scholar
  39. 39.
    Paul, K., Cauller, L.J., Llano, D.A.: Presence of a chaotic region at the sleep-wake transition in a simplified thalamocortical circuit model. Front. Comput. Neurosci. 10, 91 (2016)Google Scholar
  40. 40.
    Carroll, T.L., Pecora, L.M.: Stochastic resonance and crises. Phys. Rev. Lett. 70(5), 576–579 (1993)Google Scholar
  41. 41.
    Carroll, T.L., Pecora, L.M.: Stochastic resonance as a crisis in a period-doubled circuit. Phys. Rev. E 47(6), 3941–3949 (1993)Google Scholar
  42. 42.
    Nobukawa, S., Nishimura, H., Yamanishi, T., Liu, J.Q.: Analysis of chaotic resonance in Izhikevich neuron model. PloS ONE 10(9), e0138919 (2015)Google Scholar
  43. 43.
    Nobukawa, S., Nishimura, H., Yamanishi, T., Liu, J.Q.: Chaotic states induced by resetting process in Izhikevich neuron model. JAISCR 5(2), 109–119 (2015)Google Scholar
  44. 44.
    Schweighofer, N., Doya, K., Fukai, H., Chiron, J.V., Furukawa, T., Kawato, M.: Chaos may enhance information transmission in the inferior olive. Proc. Natl. Acad. Sci. 101(13), 4655–4660 (2004)Google Scholar
  45. 45.
    Hodgkin, A. L., Huxley, A. F.: Movement of sodium and potassium ions during nervous activity. In: Cold Spring Harbor symposia on quantitative biology (Vol. 17, pp. 43–52). Cold Spring Harbor Laboratory Press (1952)Google Scholar
  46. 46.
    Ma, J., Ying, H.P., Pu, Z.S.: An anti-control scheme for spiral under Lorenz chaotic signals. Chin. Phys. Lett. 22(5), 1065–1068 (2005)Google Scholar
  47. 47.
    Wilson, H. R.: Spikes, decisions, and actions: the dynamical foundations of neurosciences. (1999)Google Scholar
  48. 48.
    Levin, J.E., Miller, J.P.: Broadband neural encoding in the cricket cereal sensory system enhanced by stochastic resonance. Nature 380(6570), 165 (1996)Google Scholar
  49. 49.
    Pankratova, E.V., Polovinkin, A.V., Mosekilde, E.: Resonant activation in a stochastic Hodgkin–Huxley model: interplay between noise and suprathreshold driving effects. Eur. Phys. J. B 45(3), 391–397 (2005)Google Scholar
  50. 50.
    Yu, Y., Liu, F., Wang, W.: Frequency sensitivity in Hodgkin–Huxley systems. Biol. Cybern. 84(3), 227–235 (2001)Google Scholar
  51. 51.
    Wang, W., Wang, Y., Wang, Z.D.: Firing and signal transduction associated with an intrinsic oscillation in neuronal systems. Phys. Rev. E 57(3), R2527 (1998)Google Scholar
  52. 52.
    Xie, Y., Chen, L., Kang, Y.M., Aihara, K.: Controlling the onset of Hopf bifurcation in the Hodgkin–Huxley model. Phys. Rev. E 77(6), 061921 (2008)MathSciNetGoogle Scholar
  53. 53.
    Kaplan, D.T., Clay, J.R., Manning, T., Glass, L., Guevara, M.R., Shrier, A.: Subthreshold dynamics in periodically stimulated squid giant axons. Phys. Rev. Lett. 76(21), 4074 (1996)Google Scholar
  54. 54.
    Matsumoto, G.: Periodic and Nonperiodic responces of membrane potentials in squid giant axons during sinusoidal current stimulation. J. Theor. Neurobiol. 3, 1–14 (1984)Google Scholar
  55. 55.
    Aihara, K.: Chaos in neurons. Scholarpedia 3(5), 1786 (2008)Google Scholar
  56. 56.
    Guttman, R., Feldman, L., Jakbsson, E.: Frequency entrainment of squid axon membrane. J. Membr. Biol. 56(1), 9–18 (1980)Google Scholar
  57. 57.
    Lee, S.G., Kim, S.: Bifurcation analysis of mode-locking structure in a Hodgkin–Huxley neuron under sinusoidal current. Phys. Rev. E 73(4), 041924 (2006)MathSciNetGoogle Scholar
  58. 58.
    Borkowski, L.S.: Bistability and resonance in the periodically stimulated Hodgkin–Huxley model with noise. Phys. Rev. E 83(5), 051901 (2011)Google Scholar
  59. 59.
    Borkowski, L.S.: Response of a Hodgkin–Huxley neuron to a high-frequency input. Phys. Rev. E 80(5), 051914 (2009)Google Scholar
  60. 60.
    Parmananda, P., Mena, C.H., Baier, G.: Resonant forcing of a silent Hodgkin–Huxley neuron. Phys. Rev. E 66(4), 047202 (2002)MathSciNetGoogle Scholar
  61. 61.
    Bassett, D.S., Meyer-Lindenberg, A., Achard, S., Duke, T., Bullmore, E.: Adaptive reconfiguration of fractal small-world human brain functional networks. Proc. Natl. Acad. Sci. 103(51), 19518–19523 (2006)Google Scholar
  62. 62.
    Kitzbichler, M.G., Smith, M.L., Christensen, S.R., Bullmore, E.: Broadband criticality of human brain network synchronization. PLoS Comp. Biol. 5(3), e1000314 (2009)MathSciNetGoogle Scholar
  63. 63.
    Lü, J., Chen, G.: Generating multiscroll chaotic attractors: theories, methods and applications. Int. J. Bifurcat. Chaos 16(04), 775–858 (2006)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Chua, L.E.O.N.O., Komuro, M., Matsumoto, T.: The double scroll family. IEEE Trans. Circuits Syst. 33(11), 1072–1118 (1986)zbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringBülent Ecevit UniversityZonguldakTurkey
  2. 2.Department of Electrical-Electronics EngineeringBülent Ecevit UniversityZonguldakTurkey

Personalised recommendations