Study on nonlinear crawling locomotion of modular differential drive soft robot

  • Jiangbei Wang
  • Jian Min
  • Yanqiong FeiEmail author
  • Wu Pang
Original Paper


This paper presents a novel modular differential drive soft robot (MDDSR) and its nonlinear model of crawling locomotion. The MDDSR consists of three differential drive soft modules (DDSMs) in series, and each module constructed by two bending soft actuators in parallel to be equally or differentially driven can achieve inchworm-like crawling movement with capability of straight and steering motion. Through sequential motions of the DDSMs, the MDDSR can perform straight and steering crawling locomotion. A nonlinear state-space kinematic model with the principle of minimum frictional work is built to characterize the MDDSR’s crawling locomotion, which is based on nonlinear bending behavior of the soft actuator and nonlinear crawling motion of the DDSMs. Feasibility of the proposed robot and its model is verified through locomotion experiments.


Soft robotics Modular robots Differential drive Nonlinear locomotion 



This work was supported by the National Natural Science Foundation of China under Grant Nos. 51475300 and 51875335, and Joint fund of the Ministry of Education No. 18GFA-ZZ07-171.


This work was funded by the National Natural Science Foundation of China (Grant No. 51475300 and 51875335) and Joint fund of the Ministry of Education (No.18GFA-ZZ07-171).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Polygerinos, P., Lyne, S., Wang, Z., Nicolini, L.F., Mosadegh, B., Whitesides, G.M., Walsh, C.J.: Towards a soft pneumatic glove for hand rehabilitation. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1512–1517 (2013)Google Scholar
  2. 2.
    Polygerinos, P., Wang, Z., Galloway, K.C., Wood, R.J., Walsh, C.J.: Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 73, 135–143 (2015)CrossRefGoogle Scholar
  3. 3.
    Wehner, M., Truby, R.L., Fitzgerald, D.J., Mosadegh, B., Whitesides, G.M., Lewis, J.A., Wood, R.J.: An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536(7617), 451–455 (2016)CrossRefGoogle Scholar
  4. 4.
    Kim, H.J., Song, S.H., Ahn, S.H.: A turtle-like swimming robot using a smart soft composite (SSC) structure. Smart Mater. Struct. 22(1), 014007 (2013)CrossRefGoogle Scholar
  5. 5.
    Ahn, S.H., Lee, K.T., Kim, H.J., Wu, R., Kim, J.S., Song, S.H.: Smart soft composite: an integrated 3D soft morphing structure using bend–twist coupling of anisotropic materials. Int. J. Precis. Eng. Manuf. 13(4), 631–634 (2012)CrossRefGoogle Scholar
  6. 6.
    Mao, S., Dong, E., Jin, H., Xu, M., Zhang, S., Yang, J., Low, K.H.: Gait study and pattern generation of a starfish-like soft robot with flexible rays actuated by SMAs. J. Bionic Eng. 11(3), 400–411 (2014)CrossRefGoogle Scholar
  7. 7.
    Lin, H.T., Leisk, G.G., Trimmer, B.: GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir. Biomim. 6(2), 026007 (2011)CrossRefGoogle Scholar
  8. 8.
    Jenkins, T.E., Chapman, E.M., Bryant, M.: Bio-inspired online variable recruitment control of fluidic artificial muscles. Smart Mater. Struct. 25(12), 125016 (2016)CrossRefGoogle Scholar
  9. 9.
    Umedachi, T., Trimmer, B.A.: Design of a 3D-printed soft robot with posture and steering control. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 2874–2879 (2014)Google Scholar
  10. 10.
    Wang, W., Lee, J.Y., Rodrigue, H., Song, S.H., Chu, W.S., Ahn, S.H.: Locomotion of inchworm-inspired robot made of smart soft composite (SSC). Bioinspir. Biomim. 9(4), 046006 (2014)CrossRefGoogle Scholar
  11. 11.
    Fei, Y., Gao, H.: Nonlinear dynamic modeling on multi-spherical modular soft robots. Nonlinear Dyn. 78(2), 831–838 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fei, Y., Pang, W.: Analysis on nonlinear turning motion of multi-spherical soft robots. Nonlinear Dyn. 88(2), 883–892 (2017)CrossRefGoogle Scholar
  13. 13.
    Correll, N., Önal, Ç.D., Liang, H., Schoenfeld, E., Rus, D.: Soft autonomous materials—using active elasticity and embedded distributed computation. In: Springer Tracts in Advanced Robotics, vol. 79, pp. 227–240 (2014)Google Scholar
  14. 14.
    Majidi, C., Shepherd, R.F., Kramer, R.K., Whitesides, G.M., Wood, R.J.: Influence of surface traction on soft robot undulation. Int. J. Robot. Res. 32(13), 1577–1584 (2013)CrossRefGoogle Scholar
  15. 15.
    Shepherd, R.F., Ilievski, F., Choi, W., Morin, S.A., Stokes, A.A., Mazzeo, A.D., Chen, X., Wang, M., Whitesides, G.M.: Multigait soft robot. Proc. Natl. Acad. Sci. 108(51), 20400–20403 (2011)CrossRefGoogle Scholar
  16. 16.
    Tolley, M.T., Shepherd, R.F., Mosadegh, B., Galloway, K.C., Wehner, M., Karpelson, M., Wood, R.J., Whitesides, G.M.: A resilient, untethered soft robot. Soft Robot. 1(3), 213–223 (2014)CrossRefGoogle Scholar
  17. 17.
    Pang, W., Wang, J., Fei, Y.: The structure, design, and closed-loop motion control of a differential drive soft robot. Soft Robot. 5, 71–80 (2017)Google Scholar
  18. 18.
    Polygerinos, P., Mosadegh, B., Campo, A.: Design|Soft Robotics Toolkit. Accessed 10/11/2018
  19. 19.
    Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X., Whitesides, G.M.: Soft robotics for chemists. Angew. Chem. 50(8), 1890 (2011)CrossRefGoogle Scholar
  20. 20.
    Polygerinos, P., Galloway, K.C., Savage, E., Herman, M., Donnell, K.O., Walsh, C.J.: Soft robotic glove for hand rehabilitation and task specific training. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2913–2919 (2015)Google Scholar
  21. 21.
    Mosadegh, B., Polygerinos, P., Keplinger, C., Wennstedt, S., Shepherd, R.F., Gupta, U., Shim, J., Bertoldi, K., Walsh, C.J., Whitesides, G.M.: Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 24(15), 2163–2170 (2014)CrossRefGoogle Scholar
  22. 22.
    Sun, Y., Song, Y.S., Paik, J.: Characterization of silicone rubber based soft pneumatic actuators. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4446–4453 (2013)Google Scholar
  23. 23.
    Lin, H.-T., Slate, D.J., Paetsch, C.R., Dorfmann, A.L., Trimmer, B.A.: Scaling of caterpillar body properties and its biomechanical implications for the use of a hydrostatic skeleton. J. Exp. Biol. 214, 1194–1204 (2011)CrossRefGoogle Scholar
  24. 24.
    Menciassi, A., Gorini, S., Pernorio, G., Dario, P.: A SMA actuated artificial earthworm. In: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004, vol. 4, pp. 3282–3287 (2004)Google Scholar
  25. 25.
    Loepfe, M., Schumacher, C.M., Lustenberger, U.B., Stark, W.J.: An untethered, jumping roly–poly soft robot driven by combustion. Soft Robot. 2(1), 33–41 (2015)CrossRefGoogle Scholar
  26. 26.
    Popov, V.L.: Coulomb’s Law of Friction, pp. 133–154. Springer, Berlin (2010)Google Scholar
  27. 27.
    Ma, S., Wang, T.: Planar multiple-contact problems subject to unilateral and bilateral kinetic constraints with static coulomb friction. Nonlinear Dyn. 94(1), 99–121 (2018)CrossRefzbMATHGoogle Scholar
  28. 28.
    Siburg, K.F.: The Principle of Least Action in Geometry and Dynamics. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  29. 29.
    Lagarias, J.C., Wright, M.H., Wright, P.E., Reeds, J.A.: Convergence properties of the nelder-mead simplex method in low dimensions. SIAM J. Optim. 9(1), 112–147 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jiangbei Wang
    • 1
  • Jian Min
    • 1
  • Yanqiong Fei
    • 1
    Email author
  • Wu Pang
    • 1
  1. 1.Research Institute of RoboticsShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations