Advertisement

Multiscale fractional-order approximate entropy analysis of financial time series based on the cumulative distribution matrix

  • Yue TengEmail author
  • Pengjian Shang
  • Jiayi He
Original Paper
  • 27 Downloads

Abstract

In this paper, a generalized method, fractional-order approximate entropy (FOApEn), is proposed with the objective of distinguishing the complexity of time processes from statistical perspectives and characterizing differences and changes in dynamical systems. Moreover, we generalized approximate entropy (ApEn) to multiscales, which can detect complexity of time series in more scales and probe the multiscale properties containing in time series. This fractional-order approximate entropy, which provides an assessment on the multiscale complexity between measurements, is defined in terms of the FOApEn method and the multiscale method. The implementation of multiscale FOApEn is illustrated with simulated time series and financial time series. Examples taken from simulated and financial data demonstrate that tuning the fractional order allows a high sensitivity to the signal evolution and how the FOApEn for complex systems behaves on different scales and determination, which is helpful in describing the dynamics of complex systems.

Keywords

Fractional calculus Multiscale Financial market Approximate entropy 

Notes

Acknowledgements

The financial supports from the funds of the Fundamental Research Funds for the Central Universities (2018JBZ104, 2019YJS193), the National Natural Science Foundation of China (61771035) and the Beijing National Science (4162047) are gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

  1. 1.
    Kolmogorov, A.N.: A new metric invariant of transient dynamical systems and automorphisms in lebesgue spaces. Dokl. Akad. Nauk SSSR (N.S) 951(5), 861–864 (1958)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57(4), 1115–1115 (1985)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Goldberger, A.L., West, B.J.: Applications of nonlinear dynamics to clinical cardiology. Ann. N. Y. Acad. Sci. 504(1), 195213 (1987)Google Scholar
  4. 4.
    Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica D 9(1), 189–208 (1983)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl Acad. Sci. USA 88(6), 2297–301 (1991)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Pincus, S.M., Gladstone, I.M., Ehrenkranz, R.A.: A regularity statistic for medical data analysis. J. Clin. Monit. 7(4), 335–345 (1991)Google Scholar
  7. 7.
    Pincus, S.: Approximate entropy as a complexity measure. Chaos 5(1), 110 (1995)MathSciNetGoogle Scholar
  8. 8.
    Yeragani, V.K., Pohl, R., Mallavarapu, M., Balon, R.: Approximate entropy of symptoms of mood: an effective technique to quantify regularity of mood. Bipolar Disorders 5(4), 279–286 (2015)Google Scholar
  9. 9.
    Shen, C.P., Chen, C.C., Hsieh, S.L., Chen, W.H., Chen, J.M., Chen, C.M., Lai, F., Chiu, M.J.: High-performance seizure detection system using a wavelet-approximate entropy-fsvm cascade with clinical validation. Clin. EEG Neurosci. 44(4), 247 (2013)Google Scholar
  10. 10.
    Saumitra, B.: Applying approximate entropy to speculative bubble in the stock market. J. Emerg. Market Finance 13(1), 43–68 (2012)Google Scholar
  11. 11.
    Udhayakumar, R.K., Karmakar, C., Palaniswami, M.: Approximate entropy profile: a novel approach to comprehend irregularity of short-term hrv signal. Nonlinear Dyn. 88(2), 1–15 (2016)zbMATHGoogle Scholar
  12. 12.
    Anastasiadis, A.: Special issue: Tsallis entropy. Entropy 14(2), 174–176 (2012)zbMATHGoogle Scholar
  13. 13.
    Li, X., Essex, C., Davison, M., Hoffmann, K.H., Schulzky, C.: Fractional diffusion, irreversibility and entropy. J. Non-Equilibrium Thermodyn. 28(3), 279–291 (2003)Google Scholar
  14. 14.
    Mathai, A.M., Haubold, H.J.: Pathway model, superstatistics, Tsallis statistics, and a generalized measure of entropy. Physica A 375(1), 110–122 (2007)MathSciNetGoogle Scholar
  15. 15.
    Prkopa, A., Ganczer, S., Dek, I., Patyi, K.: Tsallis entropy and Jaynes’ information theory formalism. Braz. J. Phys. 29(1), 50–60 (1999)Google Scholar
  16. 16.
    Hentenryck, P., Bent, R., Upfal, E.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)Google Scholar
  17. 17.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  18. 18.
    Kvitsinski, A.A.: Fractional integrals and derivatives: theory and applications. Theor. Math. Phys 3, 397–414 (1987)Google Scholar
  19. 19.
    Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, New York (1974)zbMATHGoogle Scholar
  20. 20.
    Ben-Naim, A.: Farewell to Entropy: Statistical Thermodynamics Based on Information. World Scientific, Singapore (2008)zbMATHGoogle Scholar
  21. 21.
    Haubold, H.J., Mathai, A.M., Saxena, R.K.: Boltzmann–Gibbs entropy versus Tsallis entropy: recent contributions to resolving the argument of Einstein concerning “neither Herr Boltzmann nor Herr Planck has given a definition of w”? Astrophys. Space Sci. 290(3–4), 241–245 (2004)zbMATHGoogle Scholar
  22. 22.
    Rényi, A.: On measures of entropy and information. Maximum Entropy Bayesian Methods 1(2), 547–561 (1961)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Baleanu, D.: Fractional Calculus: Models and Numerical Methods. World Scientific, Singapore (2012)zbMATHGoogle Scholar
  24. 24.
    Combescure, M.: Hamiltonian chaos and fractional dynamics. J. Phys. Gen. Phys. 38(23), 5380 (2005)Google Scholar
  25. 25.
    Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)zbMATHGoogle Scholar
  26. 26.
    Ionescu, C.M.: The Human Respiratory System: An Analysis of the Interplay Between Anatomy, Structure, Breathing and Fractal Dynamics. Series in BioEngineering (2013)Google Scholar
  27. 27.
    Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)zbMATHGoogle Scholar
  28. 28.
    Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, San Diego (1998)zbMATHGoogle Scholar
  29. 29.
    Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Dordrecht (2010)zbMATHGoogle Scholar
  30. 30.
    Machado, J.A.T.: Entropy analysis of integer and fractional dynamical systems. Nonlinear Dyn. 62(1), 371–378 (2011)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Machado, J.A.T.: Fractional dynamics of a system with particles subjected to impacts. Commun. Nonlinear Sci. Numer. Simul. 16(12), 4596–4601 (2011)zbMATHGoogle Scholar
  32. 32.
    Machado, J.A.T.: Entropy analysis of fractional derivatives and their approximation. J. Appl. Nonlinear Dyn. 1(1), 109–112 (2012)Google Scholar
  33. 33.
    Xu, X., Qiao, Z., Lei, Y.: Repetitive transient extraction for machinery fault diagnosis using multiscale fractional order entropy infogram. Mech. Syst. Signal Process. 103, 312–326 (2018)Google Scholar
  34. 34.
    Lopes, A.M., Machado, J.A.T.: Integer and fractional-order entropy analysis of earthquake data series. Nonlinear Dyn. 84(1), 79–90 (2016)MathSciNetGoogle Scholar
  35. 35.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(4), 379–423 (1948)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Beck, C.: Generalised information and entropy measures in physics. Contemp. Phys. 50(4), 495–510 (2009)Google Scholar
  37. 37.
    Gray, R.M.: Entropy and Information Theory, pp. 319–320. Springer, New York (1990)Google Scholar
  38. 38.
    Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630 (1957)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Khinchin, A.I.: Mathematical Foundations of Information Theory. Dover, New York (1957)zbMATHGoogle Scholar
  40. 40.
    Ubriaco, M.R.: Entropies based on fractional calculus. Phys. Lett. A 373(30), 2516–2519 (2009)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Machado, J.A.T., Galhano, A.M., Oliveira, A.M., Tar, J.K.: Approximating fractional derivatives through the generalized mean. Commun. Nonlinear Sci. Numer. Simul. 14(11), 3723–3730 (2009)zbMATHGoogle Scholar
  42. 42.
    Valrio, D., Trujillo, J.J., Rivero, M., Machado, J.A.T., Baleanu, D.: Fractional calculus: a survey of useful formulas. Eur. Phys. J. Spec. Top. 222(8), 1827–1846 (2013)Google Scholar
  43. 43.
    Machado, J.: Fractional order generalized information. Entropy 16(4), 2350–2361 (2014)Google Scholar
  44. 44.
    Teng, Y., Shang, P.: Transfer entropy coefficient: quantifying level of information flow between financial time series. Physica A 469, 60–70 (2017)zbMATHGoogle Scholar
  45. 45.
    May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261(5560), 459–467 (1976)zbMATHGoogle Scholar
  46. 46.
    Dirac, P.A.M.: The physical interpretation of quantum mechanics. Proc. Roy. Soc. Lond. A 26(4), 1–40 (1942)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Hiley, B.J., Peat, F.D., Zeilinger, A.: Quantum implications: essays in honour of David Bohm. Phys. Today 39(3), 120 (1988)Google Scholar
  48. 48.
    Machado, J.A.T.: Fractional coins and fractional derivatives. Abstract and Applied Analysis (2013)Google Scholar
  49. 49.
    Wellington, S.L., Vinegar, H.J., Rouffignac, E.P.D., Berchenko, I.E., Stegemeier, G.L., Zhang, E., Shahin Jr., G.T., Fowler, T.D., Ryan, R.C.: A taxonomy of robot deception and its benefits in hri. Georgia Inst. Technol. 8215(2), 2328–2335 (2013)Google Scholar
  50. 50.
    Tarasova, V.V.: Economic interpretation of fractional derivatives. Papers 3(1), 1–7 (2017)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of ScienceBeijing Jiaotong UniversityBeijingPeople’s Republic of China

Personalised recommendations