Advertisement

Micro-beam resonator parametrically excited by electro-thermal Joule’s heating and its use as a flow sensor

  • Ben TortemanEmail author
  • Yoav Kessler
  • Alexander Liberzon
  • Slava Krylov
Original paper
  • 68 Downloads

Abstract

We study parametric resonance (PR) of double-clamped micro-beams that are electro-thermally actuated by a time-dependent Joule’s heating and cooled by a steady air flow. The developed model demonstrates applicability of such device as a bifurcation-based flow velocity sensor. An AC electric current through the beam induces a time-harmonic compressive force that leads to parametric excitation of the structure. Convective cooling due to the air flow affects the location of the parametric transition curves on the driving voltage–frequency plane. The flow velocity can be obtained by measuring the frequency corresponding to the steep amplitude transition of the response. The device is modeled as an Euler–Bernoulli beam with an axial force parameterized by the electric current. The heat transfer problem is solved analytically; the heat flux due to the air flow is calculated using empirical correlations. The behavior of the beam is studied numerically, by means of finite differences, and analytically, using an approximate single degree of freedom Galerkin model, reduced to the Mathieu–Duffing equation. We show that while the PR always emerges at the driving voltage/current below the critical static buckling value, practical realization of the purely electro-thermal parametric excitation is challenging and is highly influenced by the device dimensions and quality factors. We evaluate the parameters required to assure the PR and demonstrate, using the model, feasibility of the suggested flow-sensing approach in the devices of realistic dimensions.

Keywords

MEMS Parametric resonance Flow sensor Electro-thermal actuation 

Notes

Acknowledgements

This work was supported by the Israel Ministry of Science and Technology, under Grant 3-14411. S. Krylov is supported by the Henry and Dinah Krongold Chair of Microelectronics.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Yao, J.J.: RF MEMS from a device perspective. J. Micromech. Microeng. 10(4), R9 (2000)CrossRefGoogle Scholar
  2. 2.
    Rebeiz, G.M.: RF MEMS: Theory, Design, and Technology. Wiley, New York (2004)Google Scholar
  3. 3.
    Holmstrom, S.T., Baran, U., Urey, H.: Mems laser scanners: a review. J. Microelectromech. Syst. 23(2), 259 (2014)CrossRefGoogle Scholar
  4. 4.
    Zhao, C., Montaseri, M.H., Wood, G.S., Pu, S.H., Seshia, A.A., Kraft, M.: A review on coupled MEMS resonators for sensing applications utilizing mode localization. Sens. Actuators A Phys. 249, 93 (2016)CrossRefGoogle Scholar
  5. 5.
    Comi, C., Corigliano, A., Ghisi, A., Zerbini, S.: A resonant micro accelerometer based on electrostatic stiffness variation. Meccanica 48(8), 1893 (2013)CrossRefzbMATHGoogle Scholar
  6. 6.
    Yazdi, N., Ayazi, F., Najafi, K.: Micromachined inertial sensors. Proc. IEEE 86(8), 1640 (1998)CrossRefGoogle Scholar
  7. 7.
    Acar, C., Shkel, A.: MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness. Springer, Berlin (2008)Google Scholar
  8. 8.
    Lavrik, N.V., Sepaniak, M.J., Datskos, P.G.: Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum. 75(7), 2229 (2004)CrossRefGoogle Scholar
  9. 9.
    Boisen, A., Dohn, S., Keller, S.S., Schmid, S., Tenje, M.: Cantilever-like micromechanical sensors. Rep. Prog. Phys. 74(3), 036101 (2011)CrossRefGoogle Scholar
  10. 10.
    Yang, Y.T., Callegari, C., Feng, X., Ekinci, K.L., Roukes, M.L.: Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6(4), 583 (2006)CrossRefGoogle Scholar
  11. 11.
    Ilic, B., Yang, Y., Aubin, K., Reichenbach, R., Krylov, S., Craighead, H.: Enumeration of DNA molecules bound to a nanomechanical oscillator. Nano Lett. 5(5), 925 (2005)CrossRefGoogle Scholar
  12. 12.
    Lifshitz, R., Cross, M.: Nonlinear dynamics of nanomechanical and micromechanical resonators. Rev. Nonlinear Dyn. Complex. 1, 1 (2008)zbMATHGoogle Scholar
  13. 13.
    Kacem, N., Hentz, S., Pinto, D., Reig, B., Nguyen, V.: Nonlinear dynamics of nanomechanical beam resonators: improving the performance of NEMS-based sensors. Nanotechnology 20(27), 275501 (2009)CrossRefGoogle Scholar
  14. 14.
    Rhoads, J.F., Shaw, S.W., Turner, K.L.: Nonlinear dynamics and its applications in micro- and nanoresonators. J. Dyn. Syst. Meas. Control 132(3), 034001 (2010)CrossRefGoogle Scholar
  15. 15.
    Rugar, D., Grütter, P.: Mechanical parametric amplification and thermomechanical noise squeezing. Phys. Rev. Lett. 67(6), 699 (1991)CrossRefGoogle Scholar
  16. 16.
    Turner, K.L., Miller, S.A., Hartwell, P.G., MacDonald, N.C., Strogatz, S.H., Adams, S.G.: Five parametric resonances in a microelectromechanical system. Nature 396(6707), 149 (1998)CrossRefGoogle Scholar
  17. 17.
    Rhoads, J.F., Guo, C., Fedder, G.K.: Parametrically excited micro- and nanosystems. In: Brand, O., Dufour, I., Heinrich, S.M., Josse, F. (eds.) Resonant MEMS, pp. 73–95. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2015)Google Scholar
  18. 18.
    Rugar, D., Grütter, P.: Mechanical parametric amplification and thermomechanical noise squeezing. Phys. Rev. Lett. 67, 699 (1991)CrossRefGoogle Scholar
  19. 19.
    Ramini, A., Alcheikh, N., Ilyas, S., Younis, M.I.: Efficient primary and parametric resonance excitation of bistable resonators. AIP Adv. 6(9), 095307 (2016)CrossRefGoogle Scholar
  20. 20.
    Krylov, S., Gerson, Y., Nachmias, T., Keren, U.: Excitation of large-amplitude parametric resonance by the mechanical stiffness modulation of a microstructure. J. Micromech. Microeng. 20(1), 015041 (2009)CrossRefGoogle Scholar
  21. 21.
    Vyas, A., Peroulis, D., Bajaj, A.K.: A microresonator design based on nonlinear 1: 2 internal resonance in flexural structural modes. J. Microelectromech. Syst. 18(3), 744 (2009)CrossRefGoogle Scholar
  22. 22.
    Dong, J., Ferreira, P.M.: Electrostatically actuated cantilever with soi-mems parallel kinematic \( xy \) stage. J. Microelectromech. Syst. 18(3), 641 (2009)CrossRefGoogle Scholar
  23. 23.
    Krylov, S., Lurie, K., Ya’akobovitz, A.: Compliant structures with time-varying moment of inertia and non-zero averaged momentum and their application in angular rate microsensors. J. Sound Vib. 330(20), 4875 (2011)CrossRefGoogle Scholar
  24. 24.
    Karabalin, R., Masmanidis, S., Roukes, M.: Efficient parametric amplification in high and very high frequency piezoelectric nanoelectromechanical systems. Appl. Phys. Lett. 97(18), 183101 (2010)CrossRefGoogle Scholar
  25. 25.
    Zalalutdinov, M., Olkhovets, A., Zehnder, A., Ilic, B., Czaplewski, D., Craighead, H.G., Parpia, J.M.: Optically pumped parametric amplification for micromechanical oscillators. Appl. Phys. Lett. 78(20), 3142 (2001)CrossRefGoogle Scholar
  26. 26.
    Dolleman, R.J., Houri, S., Chandrashekar, A., Alijani, F., van der Zant, H.S., Steeneken, P.G.: Opto-thermally excited multimode parametric resonance in graphene membranes. Sci. Rep. 8(1), 9366 (2018)CrossRefGoogle Scholar
  27. 27.
    Rhoads, J.F., Shaw, S.W., Turner, K.L.: The nonlinear response of resonant microbeam systems with purely-parametric electrostatic actuation. J. Micromech. Microeng. 16(5), 890 (2006)CrossRefGoogle Scholar
  28. 28.
    Zhang, W.M., Yan, H., Peng, Z.K., Meng, G.: Electrostatic pull-in instability in MEMS/NEMS: a review. Sens. Actuators A Phys. 214, 187 (2014)CrossRefGoogle Scholar
  29. 29.
    Linzon, Y., Ilic, B., Lulinsky, S., Krylov, S.: Efficient parametric excitation of silicon-on-insulator microcantilever beams by fringing electrostatic fields. J. Appl. Phys. 113(16), 163508 (2013)CrossRefGoogle Scholar
  30. 30.
    Pallay, M., Towfighian, S.: A parametric electrostatic resonator using repulsive force. Sens. Actuators A Phys. 277, 134 (2018)CrossRefGoogle Scholar
  31. 31.
    Krakover, N., Hic, B.R., Krylov, S.: In: 2018 IEEE on Micro Electro Mechanical Systems (MEMS), pp. 846–849. IEEE (2018)Google Scholar
  32. 32.
    Pelesko, J.A., Bernstein, D.H.: Modeling MEMS and NEMS. CRC Press, Boca Raton (2002)CrossRefzbMATHGoogle Scholar
  33. 33.
    Enikov, E.T., Kedar, S.S., Lazarov, K.V.: Analytical model for analysis and design of v-shaped thermal microactuators. J. Microelectromech. Syst. 14(4), 788 (2005)CrossRefGoogle Scholar
  34. 34.
    Syms, R.R.: Electrothermal frequency tuning of folded and coupled vibrating micromechanical resonators. J. Microelectromech. Syst. 7(2), 164 (1998)CrossRefGoogle Scholar
  35. 35.
    Hajjaj, A.Z., Ramini, A., Alcheikh, N., Younis, M.I.: Electrothermally tunable arch resonator. J. Microelectromech. Syst. 26(4), 837 (2017)CrossRefGoogle Scholar
  36. 36.
    Elata, D., Mahameed, R.: In: 19th IEEE International Conference on Micro Electro Mechanical Systems, 2006. MEMS 2006 Istanbul, pp. 850–853. IEEE (2006)Google Scholar
  37. 37.
    Ilic, B., Krylov, S., Aubin, K., Reichenbach, R., Craighead, H.: Optical excitation of nanoelectromechanical oscillators. Appl. Phys. Lett. 86(19), 193114 (2005)CrossRefGoogle Scholar
  38. 38.
    Zalalutdinov, M., Zehnder, A., Olkhovets, A., Turner, S., Sekaric, L., Ilic, B., Czaplewski, D., Parpia, J.M., Craighead, H.G.: Autoparametric optical drive for micromechanical oscillators. Appl. Phys. Lett. 79(5), 695 (2001)CrossRefGoogle Scholar
  39. 39.
    Reichenbach, R.B., Zalalutdinov, M., Aubin, K.L., Rand, R., Houston, B.H., Parpia, J.M., Craighead, H.G.: Third-order intermodulation in a micromechanical thermal mixer. J. Microelectromech. Syst. 14(6), 1244 (2005)CrossRefGoogle Scholar
  40. 40.
    Sibgatullin, T., Schreiber, D., Krylov, S.: In: ECCOMAS Thematic Conference—COMPDYN 2013: 4th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Proceedings—An IACM Special Interest Conference, pp. 12–14 (2013)Google Scholar
  41. 41.
    Wang, Y.H., Chen, C.P., Chang, C.M., Lin, C.P., Lin, C.H., Fu, L.M., Lee, C.Y.: Mems-based gas flow sensors. Microfluid. Nanofluidics 6(3), 333 (2009)CrossRefGoogle Scholar
  42. 42.
    Stainback, P., Nagabushana, K.: Review of hot-wire anemometry techniques and the range of their applicability for various flows. a a 1, 4 (1993)Google Scholar
  43. 43.
    Svedin, N., Kalvesten, E., Stemme, G.: A new edge-detected lift force flow sensor. J. Microelectromech. Syst. 12(3), 344 (2003)CrossRefGoogle Scholar
  44. 44.
    Bouwstra, S., Legtenberg, R., Tilmans, H.A., Elwenspoek, M.: Resonating microbridge mass flow sensor. Sens. Actuators A Phys. 21(1–3), 332 (1990)CrossRefGoogle Scholar
  45. 45.
    Hajjaj, A.Z., Alcheikh, N., Hafiz, M.A.A., Ilyas, S., Younis, M.I.: A scalable pressure sensor based on an electrothermally and electrostatically operated resonator. Appl. Phys. Lett. 111(22), 223503 (2017)CrossRefGoogle Scholar
  46. 46.
    Kessler, Y., Krylov, S., Liberzon, A.: Flow sensing by buckling monitoring of electrothermally actuated double-clamped micro beams. Appl. Phys. Lett. 109(8), 083503 (2016)CrossRefGoogle Scholar
  47. 47.
    Kessler, Y., Ilic, R., Krylov, S., Liberzon, A.: Flow sensor based on the snap-through detection of a curved micromechanical beam. J. Microelectromech. Syst. 27(6), 945 (2018)CrossRefGoogle Scholar
  48. 48.
    Villaggio, P.: Mathematical Models for Elastic Structures. Cambridge University Press, Cambridge (2005)zbMATHGoogle Scholar
  49. 49.
    Holman, J.: Heat Transfer. McGraw-Hill Inc., New York (1986)Google Scholar
  50. 50.
    Carslow, H., Jaeger, J., Morral, J.: Conduction of Heat in Solids. Oxford University Press, New York (1986)Google Scholar
  51. 51.
    Kouh, T., Hanay, M., Ekinci, K.: Nanomechanical motion transducers for miniaturized mechanical systems. Micromachines 8(4), 108 (2017)CrossRefGoogle Scholar
  52. 52.
    Bolotin, V.: Dynamic Stability of Elastic Systems. Holden-day, Inc., Oakland (1962)CrossRefGoogle Scholar
  53. 53.
    Rand, R.H.: Lecture Notes in Nonlinear Vibrations (version 45). Internet-First University Press, Ithaca, NY (2004). http://dspace.library.cornell.edu/handle/1813/79
  54. 54.
    Magnus, W., Winkler, S.: Hill’s Equation. Courier Corporation, North Chelmsford (2013)zbMATHGoogle Scholar
  55. 55.
    Krylov, S., Harari, I., Cohen, Y.: Stabilization of electrostatically actuated microstructures using parametric excitation. J. Micromech. Microeng. 15(6), 1188 (2005)CrossRefGoogle Scholar
  56. 56.
    Zook, J., Burns, D., Guckel, H., Sniegowski, J., Engelstad, R., Feng, Z.: Characteristics of polysilicon resonant microbeams. Sens. Actuators A Phys. 35(1), 51 (1992)CrossRefGoogle Scholar
  57. 57.
    Lee, J.E.Y., Yan, J., Seshia, A.A.: In: 2008 IEEE Ultrasonics Symposium, pp. 2213–2216. IEEE (2008)Google Scholar
  58. 58.
    Kessler, Y., Liberzon, A., Krylov, S.: In: 2016 IEEE SENSORS, pp. 1–3. IEEE (2016)Google Scholar
  59. 59.
    Mills, A.F., Mills, A.: Basic Heat and Mass Transfer, vol. 2. Prentice hall, Upper Saddle River (1999)zbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringTel Aviv UniversityTel AvivIsrael

Personalised recommendations