Advertisement

Multi-pulse jumping orbits and chaotic dynamics of cantilevered pipes conveying time-varying fluid

  • Li ZhangEmail author
  • Fangqi ChenEmail author
Original paper
  • 29 Downloads

Abstract

Global bifurcations and multi-pulse chaotic motions of cantilevered pipes conveying time-varying fluid under external excitation are investigated. The method of multiple scales and Galerkin’s approach are utilized on the partial differential governing equation to yield the four-dimensional averaged equation with 1:2 internal resonance and primary parameter resonance. Based on the averaged equations, the normal form theory is adopted to derive the explicit expressions of normal form associated with a double zeroes and a pair of purely imaginary eigenvalues. Then the energy-phase method is employed to analyze the chaotic dynamics by identifying the existence of the multi-pulse Silnikov-type orbits in the perturbed phase space. The homoclinic trees which describe the repeated bifurcations of multi-pulse solutions are demonstrated in both Hamiltonian and dissipative perturbation. The diagrams indicate a gradual breakup of homoclinic tree in the system as the dissipative factor grows. Numerical simulations are performed to show the multi-pulse jumping orbits and Silnikov-type chaotic behaviors may occur. The influence of the external excitation and the flow velocity of the cantilevered pipe on the dynamics of the system is discussed simultaneously in numerical results. The global dynamics also exhibits the existence of the chaos in the sense of Smale horseshoes for the cantilevered pipe conveying time-varying fluid under external excitation.

Keywords

Cantilevered pipe Multi-pulse orbits Chaotic dynamics Energy-phase method 

Notes

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (NNSFC) through Grant Nos. 11572148, 11872201,11772148 and the Natural Science Research Project for Colleges and Universities of Anhui Province (KJ2018A0048).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Païdoussis, M.P., Li, G.X.: Pipes conveying fluid: a model dynamical problem. J. Fluid. Struct. 7, 137–204 (1993)CrossRefGoogle Scholar
  2. 2.
    Lundgren, T.S., Sethna, P.R., Bajaj, A.K.: Stability boundaries for flow induced motions of tubes with an inclined terminal nozzle. J. Sound Vib. 64, 553–571 (1979)CrossRefzbMATHGoogle Scholar
  3. 3.
    Rousselet, J., Herrmann, G.: Dynamic behavior of continuous cantilevered pipes conveying fluid near critical velocities. J. Appl. Math. 48, 943–974 (1981)Google Scholar
  4. 4.
    Païdoussis, M.P., Semler, C.: Nonlinear and chaotic oscillations of a constrained cantilevered pipes conveying fluid: a full nonlinear analysis. Nonlinear Dyn. 4, 655–670 (1993)CrossRefGoogle Scholar
  5. 5.
    Li, G.X., Païdoussis, M.P.: Stability, double degeneracy and chaos in cantilevered pipes conveying fluid. Int. J. Non-Linear Mech. 29, 83–107 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Steindl, A., Troger, H.: Nonlinear three-dimensional oscillations of elastical constrained fluid conveying viscoelastic tubes with perfect and broken \(O(2)\)-symmetry. Nonlinear Dyn. 7, 165–193 (1995)CrossRefGoogle Scholar
  7. 7.
    Semler, C., Païdoussis, M.P.: Nonlinear analysis of the parametric resonances of a planar fluid-conveying cantilevered pipe. J. Fluid. Stuct. 10, 787–852 (1996)CrossRefGoogle Scholar
  8. 8.
    Mao, X.Y., Ding, H., Chen, L.Q.: Steady-state response of a fluid-conveying pipe with 3:1 internal resonance in supercritical regime. Nonlinear Dyn. 86, 795–809 (2016)CrossRefGoogle Scholar
  9. 9.
    Chen, L.Q., Zhang, Y.L., Zhang, G.C., Ding, H.: Evolution of the double-jumping in pipes conveying fluid flowing at the supercritical speed. Int. J. Non-Linear Mech. 58, 11–21 (2014)CrossRefGoogle Scholar
  10. 10.
    Ni, Q., Tang, M., Luo, Y.Y., Wang, Y.K., Wang, L.: Internal-external resonance of a curved pipe conveying fluid resting on a nonlinear elastic foundation. Nonlinear Dyn. 76, 867–886 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jin, J.D., Song, Z.Y.: Parametric resonances of supported pipes conveying pulsating fluid. J. Fluid Struct. 20, 763–783 (2005)CrossRefGoogle Scholar
  12. 12.
    Panda, L.N., Kar, R.C.: Nonlinear dynamics of a pipe conveying pulsating fluid with parametric and internal resonances. Nonlinear Dyn. 49, 9–30 (2007)CrossRefzbMATHGoogle Scholar
  13. 13.
    Panda, L.N., Kar, R.C.: Nonlinear dynamics of a pipe conveying pulsating fluid with combination, principal parametric and internal resonances. J. Sound Vib. 309, 375–406 (2008)CrossRefGoogle Scholar
  14. 14.
    Rong, B., Rui, X.T., Ni, X.J., Tao, L., Wang, G.P.: Nonlinear dynamics analysis of pipe conveying fluid by Riccati absolute nodal coordinate transfer matrix method. Nonlinear Dyn. 92(2), 699–708 (2018)CrossRefGoogle Scholar
  15. 15.
    Wiggins, S.: Global Bifurcations and Chaos-Analytical Methods. Springer, New York (1988)CrossRefzbMATHGoogle Scholar
  16. 16.
    Kovac̆ic̆, G., Wiggins, S.: Orbits homoclinic to resonances with an application to chaos in a model of the forced and damped sine-Gordon equation. Phys. D 57, 185–225 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Haller, G., Wiggins, S.: Orbits homoclinic to resonance: the Hamiltonian. Phys. D 66, 298–346 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Haller, G., Wiggins, S.: N-pulse homoclinic orbits in perturbations of resonant Hamiltonian systems. Arch. Ration. Mech. Anal. 130, 25–101 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Haller, G., Wiggins, S.: Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forces nonlinear Schrodinger equation. Phys. D 85, 31–47 (1995)CrossRefzbMATHGoogle Scholar
  20. 20.
    Tiet, W.M., Sri Namachchivaya, N., Bajaj, A.K.: Nonlinear dynamics of a shallow arch under periodic excitation-I: 1:2 internal resonance. Int. J. Non-Linear Mech. 29, 349–366 (1994)CrossRefzbMATHGoogle Scholar
  21. 21.
    Tiet, W.M., Sri Namachchivaya, N., Malhotra, N.: Nonlinear dynamics of a shallow arch under periodic excitation-II: 1:1 internal resonance. Int. J. Non-Linear Mech. 29, 367–386 (1994)CrossRefzbMATHGoogle Scholar
  22. 22.
    Zhang, L., Chen, F.Q.: Global bifurcations of symmetric cross-ply composite laminated plates with 1:2 internal resonance. ZAMM Z. Angew. Math. Mech. 98, 474–490 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    An, F.X., Chen, F.Q.: Multi-pulse chaotic motions of functionally graded truncated conical shell under complex loads. Nonlinear Dyn. 89, 1753–1778 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Yao, M.H., Zhang, W.: Muti-pulse chaotic dynamics in non-planar motion of parametrically excited viscoelastic moving belt. J. Sound Vib. 331, 2624–2653 (2012)CrossRefGoogle Scholar
  25. 25.
    Serajian, R., Younesian, D., Jafari, A.A., Serajian, R., Younesian, D., et al.: Effects of the bogie and body inertia on the nonlinear wheel-set hunting recognized by the hopf bifurcation theory. Int. J. Autom. Eng. 3(4), 186–196 (2011)Google Scholar
  26. 26.
    Serajian, R.: Parameters’ changing influence with different lateral stiffnesses on nonlinear analysis of hunting behavior of a bogie. J. Vibroeng. 1(4), 195–206 (2013)Google Scholar
  27. 27.
    Serajian, R., Mohammadi, S., Nasr, A.: Influence of train length on in-train longitudinal forces during brake application. Veh. Syst. Dyn. 57(6), 1–15 (2018)Google Scholar
  28. 28.
    Mohammadi, S., Serajian, R.: Effects of the change in auto coupler parameters on in-train longitudinal forces during brake application. Mech. Ind. 16(2), 205–217 (2015)CrossRefGoogle Scholar
  29. 29.
    Kodba, S., Perc, M., Marhl, M.: Detecting chaos from a time series. Eur. J. Phys. 26(1), 205–215 (2005)CrossRefGoogle Scholar
  30. 30.
    Perc, M.: Visualizing the attraction of strange attractors. Eur. J. Phys. 26(4), 579–587 (2005)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Jr, I.F., Perc, M., Kamal, S.M., Fister, I.: A review of chaos-based firefly algorithms: perspectives and research challenges. Appl. Math. Comput. 252, 155–165 (2015)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Ginoux, J.M., Ruskeepää, H., Perc, M., et al.: Is type 1 diabetes a chaotic phenomenon? Chaos. Soliton Fract. 111, 198–205 (2018)CrossRefGoogle Scholar
  33. 33.
    Païdoussis, M.P.: Fluid-Structure Interactions: Slender Structure and Axial Flow. Springer, New York (1998)Google Scholar
  34. 34.
    Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)zbMATHGoogle Scholar
  35. 35.
    Nayfeh, A.H.: Nonliear Interactions. Wiley, New York (1998)Google Scholar
  36. 36.
    Nayfeh, A.H., Mook, D.T.: Nonliear Oscillations. Wiley, New York (1979)Google Scholar
  37. 37.
    Zhang, W., Wang, F.X., Zu, J.W.: Computation of normal forms for high dimensional non-linear systems and application to non-planar non-linear oscillation of a cantilevered beam. J. Sound Vib. 278, 949–974 (2004)CrossRefzbMATHGoogle Scholar
  38. 38.
    Kovac̆ic̆, G., Wettergre, T.A.: Homoclinic orbits in the dynamics of resonantly driven coupled pendula. Z. Angew. Math. Phys.(ZAMP) 47, 221–264 (1996)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Kaper, T.J., Kovac̆ic̆, G.: Multi-bump orbits homoclinic to resonance bands. Trans. Am. Math. Soc. 348, 3835–3887 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Camassa, R., Kovac̆ic̆, G., Tin, S.K.: A Melnikov method for homoclinic orbits with many pulse. Arch. Ration. Mech. Anal. 143, 105–193 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of MechanicsNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  2. 2.School of Mathematics and PhysicsAnhui University of TechnologyMa’anshanPeople’s Republic of China
  3. 3.Department of MathematicsNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  4. 4.College of Mathematics and System ScienceShandong University of Science and TechnologyQingdaoPeople’s Republic of China

Personalised recommendations