Dissipative control of Markovian jump fuzzy systems under nonhomogeneity and asynchronism

  • Sung Hyun KimEmail author
Original Paper


This paper deals with the problem of asynchronous mode-dependent dissipative control synthesis for a class of nonhomogeneous discrete-time Markovian jump fuzzy systems. By exploring the asynchronous phenomenon between plant and control operation modes characterized by nonhomogeneous Markov chains, a more realistic situation is reflected in the relaxation problem of multi-parameterized matrix inequalities. Further, via the proposed relaxation method, (1) the strict range constraints are imposed on multiple time-varying parameters and (2) the conditional relation between asynchronous Markov chains is definitely exploited to achieve less conservative results. Finally, two examples are given to illustrate the validity of the proposed approach.


Asynchronous phenomenon Nonhomogeneous Markov chain Multi-parameterized matrix inequality Relaxation technique Dissipative fuzzy control 



This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2018R1D1A1B07041456).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Aberkane, S.: Stochastic stabilization of a class of nonhomogeneous Markovian jump linear systems. Syst. Control Lett. 60(3), 156–160 (2011)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Arrifano, N.S., Oliveira, V.A.: Robust \({{\cal{H}}}_\infty \) fuzzy control approach for a class of Markovian jump nonlinear systems. IEEE Trans. Fuzzy Syst. 14(6), 738–754 (2006)Google Scholar
  3. 3.
    Cheng, J., Park, J.H., Karimi, H.R., Zhao, X.: Static output feedback control of nonhomogeneous Markovian jump systems with asynchronous time delays. Inf. Sci. 399, 219–238 (2017)Google Scholar
  4. 4.
    Cheng, J., Park, J.H., Zhang, L., Zhu, Y.: An asynchronous operation approach to event-triggered control for fuzzy Markovian jump systems with general switching policies. IEEE Trans. Fuzzy Syst. 26(1), 6–18 (2018)Google Scholar
  5. 5.
    Choi, D.J., Park, P.: Guaranteed cost controller design for discrete-time switching fuzzy systems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(1), 110–119 (2004)Google Scholar
  6. 6.
    Ding, B., Sun, H., Yang, P.: Further studies on LMI-based relaxed stabilization conditions for nonlinear systems in Takagi–Sugeno’s form. Automatica 42(3), 503–508 (2006)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Dong, X.Z.: Robust strictly dissipative control for discrete singular systems. IET Control Theory Appl. 1(4), 1060–1067 (2007)MathSciNetGoogle Scholar
  8. 8.
    do Valle Costa, O.L., Fragoso, M.D., Todorov, M.G.: A detector-based approach for the \({\cal{H}}_2\) control of Markov jump linear systems with partial information. IEEE Trans. Autom. Control 60(5), 1219–1234 (2015)zbMATHGoogle Scholar
  9. 9.
    Guerra, T.M., Vermeiren, L.: LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi–Sugeno’s form. Automatica 40(5), 823–829 (2004)MathSciNetzbMATHGoogle Scholar
  10. 10.
    He, S.: Fault detection filter design for a class of nonlinear Markovian jumping systems with mode-dependent time-varying delays. Nonlinear Dyn. 91(3), 1871–1884 (2018)zbMATHGoogle Scholar
  11. 11.
    He, S., Xu, H.: Non-fragile finite-time filter design for time-delayed Markovian jumping systems via T–S fuzzy model approach. Nonlinear Dyn. 80(3), 1159–1171 (2015)zbMATHGoogle Scholar
  12. 12.
    Hou, L., Cheng, J., Qi, W.: Event-triggered reliable control for fuzzy Markovian jump systems with mismatched membership functions. ISA Trans. 66, 96–104 (2017)Google Scholar
  13. 13.
    Huang, R., Lin, Y., Lin, Z.: Robust \({{\cal{H}}}_\infty \) fuzzy observer-based tracking control design for a class of nonlinear stochastic Markovian jump systems. Asian J. Control 14(2), 512–526 (2012)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kim, S.H.: Control synthesis of Markovian jump fuzzy systems based on a relaxation scheme for incomplete transition probability descriptions. Nonlinear Dyn. 78(1), 691–701 (2014)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Kim, S.H.: Control design of non-homogeneous Markovian jump systems via relaxation of bilinear time-varying matrix inequalities. IET Control Theory Appl. 11(1), 47–56 (2016)MathSciNetGoogle Scholar
  16. 16.
    Kim, S.H.: Improved relaxation method for control design of non-homogeneous Markovian jump fuzzy systems with general transition descriptions. IET Control Theory Appl. 12(1), 155–162 (2017)MathSciNetGoogle Scholar
  17. 17.
    Kwon, N.K., Park, I.S., Park, P.: \({{\cal{H}}}_\infty \) state-feedback control for continuous-time Markovian jump fuzzy systems using a fuzzy weighting-dependent Lyapunov function. Nonlinear Dyn. 90(3), 2001–2011 (2017)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Liu, Y., Fang, F., Park, J.H.: Decentralized dissipative filtering for delayed nonlinear interconnected systems based on T–S fuzzy model. IEEE Trans. Fuzzy Syst. (2018). Google Scholar
  19. 19.
    Liu, Y., Fang, F., Park, J.H., Kim, H., Yi, X.: Asynchronous output feedback dissipative control of Markovian jump systems with input time delay and quantized measurements. Nonlinear Anal. Hybrid Syst. 31, 109–122 (2019)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Ma, S., Peng, C., Song, Y., Du, D.: Networked \({{\cal{H}}}_\infty \) filtering for Markovian jump T–S fuzzy systems with imperfect premise matching. IET Signal Process. 11(3), 304–312 (2016)Google Scholar
  21. 21.
    Mahmoud, M.S., Shi, P.: Robust control for Markovian jump linear discrete-time systems with unknown nonlinearities. IEEE Trans. Circuits Syst. I Fundam. Theor. Appl. 49(4), 538–542 (2002)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Palm, R., Driankov, D.: Fuzzy switched hybrid systems-modeling and identification. In: Intelligent control (ISIC), 1998. Held jointly with IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), Proceedings of the Intelligent Systems and Semiotics (ISAS), pp. 130–135. IEEE (1998)Google Scholar
  23. 23.
    Qi, W., Park, J.H., Zong, G., Cao, J., Cheng, J.: A fuzzy Lyapunov function approach to positive \(\cal{L}_1\) observer design for positive fuzzy semi-Markovian switching systems with its application. IEEE Trans. Syst. Man Cybern. Syst. (2018). Google Scholar
  24. 24.
    Qi, W., Zong, G., Karim, H.R.: Observer-based adaptive SMC for nonlinear uncertain singular semi-Markov jump systems with applications to DC motor. IEEE Trans. Circuits Syst. I Regul. Pap. 65(9), 2951–2960 (2018)MathSciNetGoogle Scholar
  25. 25.
    Qi, W., Zong, G., Karimi, H.R.: \(\cal{L}_\infty \) control for positive delay systems with semi-Markov process and application to a communication network model. IEEE Trans. Ind. Electron. 66(3), 2081–2091 (2019)Google Scholar
  26. 26.
    Ramasamy, S., Nagamani, G., Zhu, Q.: Robust dissipativity and passivity analysis for discrete-time stochastic T–S fuzzy Cohen–Grossberg Markovian jump neural networks with mixed time delays. Nonlinear Dyn. 85(4), 2777–2799 (2016)zbMATHGoogle Scholar
  27. 27.
    Shen, H., Li, F., Wu, Z.G., Park, J.H., Sreeram, V.: Fuzzy-model-based nonfragile control for nonlinear singularly perturbed systems with semi-Markov jump parameters. IEEE Trans. Fuzzy Syst. 26(6), 3428–3439 (2018)Google Scholar
  28. 28.
    Shen, H., Li, F., Xu, S., Sreeram, V.: Slow state variables feedback stabilization for semi-Markov jump systems with singular perturbations. IEEE Trans. Autom. Control 63(8), 2709–2714 (2018)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Shen, H., Li, F., Yan, H., Karimi, H.R., Lam, H.K.: Finite-time event-triggered \(\cal{H}_\infty \) control for T–S fuzzy Markov jump systems. IEEE Trans. Fuzzy Syst. 26(5), 3122–3135 (2018)Google Scholar
  30. 30.
    Shen, H., Zhu, Y., Zhang, L., Park, J.H.: Extended dissipative state estimation for Markov jump neural networks with unreliable links. IEEE Trans. Neural Netw. Learn. Syst. 28(2), 346–358 (2017)MathSciNetGoogle Scholar
  31. 31.
    Sheng, L., Gao, M.: Stabilization for Markovian jump nonlinear systems with partly unknown transition probabilities via fuzzy control. Fuzzy Sets Syst. 161(21), 2780–2792 (2010)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Song, J., Niu, Y., Zou, Y.: Asynchronous sliding mode control of Markovian jump systems with time-varying delays and partly accessible mode detection probabilities. Automatica 93, 33–41 (2018)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Song, M.K., Park, J.B., Joo, Y.H.: Stability and stabilization for discrete-time Markovian jump fuzzy systems with time-varying delays: partially known transition probabilities case. Int. J. Control Autom. Syst. 11(1), 136–146 (2013)Google Scholar
  34. 34.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. In: Dubois, D., Prade, H., Yager, R.R. (eds.) Readings in Fuzzy Sets for Intelligent Systems, pp. 387–403. Elsevier, New York (1993)Google Scholar
  35. 35.
    Tan, Z., Soh, Y.C., Xie, L.: Dissipative control for linear discrete-time systems. Automatica 35(9), 1557–1564 (1999)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Tuan, H.D., Apkarian, P., Narikiyo, T., Yamamoto, Y.: Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Syst. 9(2), 324–332 (2001)Google Scholar
  37. 37.
    Wang, Z., Lam, J., Liu, X.: Robust filtering for discrete-time Markovian jump delay systems. IEEE Signal Process. Lett. 11(8), 659–662 (2004)Google Scholar
  38. 38.
    Wu, H.N., Cai, K.Y.: Mode-independent robust stabilization for uncertain Markovian jump nonlinear systems via fuzzy control. IEEE Trans. Syst. Man Cybern. Part B Cybern. 36(3), 509–519 (2006)Google Scholar
  39. 39.
    Wu, L., Zheng, W.X., Gao, H.: Dissipativity-based sliding mode control of switched stochastic systems. IEEE Trans. Autom. Control 58(3), 785–791 (2013)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Wu, Z.G., Dong, S., Su, H., Li, C.: Asynchronous dissipative control for fuzzy Markov jump systems. IEEE Trans. Cybern. 48(8), 2426–2436 (2018)Google Scholar
  41. 41.
    Wu, Z.G., Shi, P., Su, H., Chu, J.: Asynchronous \(l_2\)-\(l_\infty \) filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities. Automatica 50(1), 180–186 (2014)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Yin, Y., Lin, Z.: Constrained control of uncertain nonhomogeneous Markovian jump systems. Int. J. Robust Nonlinear Control 27(17), 3937–3950 (2017)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Zhang, L., Zhu, Y., Shi, P., Zhao, Y.: Resilient asynchronous \(\cal{H}_\infty \) filtering for Markov jump neural networks with unideal measurements and multiplicative noises. IEEE Trans. Cybern. 45(12), 2840–2852 (2015)Google Scholar
  44. 44.
    Zhao, J., Hill, D.J.: Dissipativity theory for switched systems. IEEE Trans. Autom. Control 53(4), 941–953 (2008)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Electrical EngineeringUniversity of UlsanUlsanKorea

Personalised recommendations