Advertisement

Nonlinear Dynamics

, Volume 96, Issue 4, pp 2693–2705 | Cite as

Control strategy for fixed-time leader–follower consensus for multi-agent systems with chained-form dynamics

  • Pipit AnggraeniEmail author
  • Michael Defoort
  • Mohamed Djemai
  • Zongyu Zuo
Original Paper
  • 287 Downloads

Abstract

This paper is concerned with the fixed-time consensus problem of multiple chained-form systems under matched perturbations. In this study, the leader (which can be dynamic) only transmits its state and control input to its neighbors. For each agent, a decentralized observer is designed to estimate the leader state in a fixed-time. Contrary to finite-time schemes, the estimation of the settling time does not require the knowledge of the initial state, allowing a step-by-step design for the controller. A decentralized observer-based control protocol is proposed for each agent to solve the leader–follower consensus problem in a fixed-time. This paper ends with a numerical example showing the effectiveness of the proposed approach.

Keywords

Multi-agent system Fixed-time stability Chained-form dynamics Tracking consensus Decentralized observer Nonlinear systems Lyapunov stability 

Notes

Acknowledgements

This work was partially supported by the European Community, the Regional Delegation for research and technology, the Haut de France Region, the Ministry of Higher Education and Research and the National Center for Scientific Research under the UVHC BI-CFNes and PHC NUSANTARA projects.

Compliance with ethical standards

Conflict interest

The authors declare that they have no conflict of interest.

Human and animal rights

The research work does not involve any human participants and/or animals.

References

  1. 1.
    Su, H., Chen, M.Z., Wang, X.: Global coordinated tracking of multi-agent systems with disturbance uncertainties via bounded control inputs. Nonlinear Dyn. 82(4), 2059–2068 (2015)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Yang, Z., Zhang, Q., Chen, Z.: Flocking of multi-agents with nonlinear inner-coupling functions. Nonlinear Dyn. 60(3), 255–264 (2010)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Khosravi, S., Jahangir, M., Afkhami, H.: Adaptive fuzzy SMC-based formation design for swarm of unknown time-delayed robots. Nonlinear Dyn. 69(4), 1825–1835 (2012)MathSciNetGoogle Scholar
  4. 4.
    Lin, J., Morse, A.S., Anderson, B.D.: The multi-agent rendezvous problem. Part 2: the asynchronous case. SIAM J. Control Optim. 46(6), 2120–2147 (2007)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Zhang, W., Liu, J.: Cooperative global robust group output regulation for multi-agent systems with heterogeneous uncertain second-order nonlinear dynamics. Nonlinear Dyn. 92(4), 1733–1744 (2018)zbMATHGoogle Scholar
  6. 6.
    Defoort, M., Floquet, T., Kokosy, A., Perruquetti, W.: Sliding-mode formation control for cooperative autonomous mobile robots. IEEE Trans. Ind. Electron. 55(11), 3944–3953 (2008)Google Scholar
  7. 7.
    Oh, K.K., Park, M.C., Ahn, H.S.: A survey of multi-agent formation control. Automatica 53, 424–440 (2015)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Ren, W., Beard, R.W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50(5), 655–661 (2005)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)zbMATHGoogle Scholar
  10. 10.
    Seyboth, G.S., Dimarogonas, D.V., Johansson, K.H.: Event-based broadcasting for multi-agent average consensus. Automatica 49(1), 245–252 (2013)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Defoort, M., Demesure, G., Zuo, Z., Polyakov, A., Djemai, M.: Fixed-time stabilisation and consensus of non-holonomic systems. IET Control Theory Appl. 10(18), 2497–2505 (2016)MathSciNetGoogle Scholar
  12. 12.
    Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Hu, J., Feng, G.: Distributed tracking control of leader–follower multi-agent systems under noisy measurement. Automatica 46(8), 1382–1387 (2010)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Hu, G.: Robust consensus tracking of a class of second-order multi-agent dynamic systems. Syst. Control Lett. 61(1), 134–142 (2012)MathSciNetzbMATHGoogle Scholar
  15. 15.
    He, W., Chen, G., Han, Q.L., Qian, F.: Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control. Inf. Sci. 380, 145–158 (2017)Google Scholar
  16. 16.
    Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Kim, Y., Mesbahi, M.: On maximizing the second smallest eigenvalue of a state-dependent graph Laplacian. In: Proceedings of the 2005 IEEE American Control Conference 2005, pp. 99–103 (2005)Google Scholar
  18. 18.
    Khoo, S., Xie, L., Man, Z.: Robust finite-time consensus tracking algorithm for multirobot systems. IEEE/ASME Trans. Mechatron. 14(2), 219–228 (2009)Google Scholar
  19. 19.
    Zhao, Y., Duan, Z., Wen, G., Zhang, Y.: Distributed finite-time tracking control for multi-agent systems: an observer-based approach. Syst. Control Lett. 62(1), 22–28 (2013)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Mobayen, S.: Finite-time tracking control of chained-form nonholonomic systems with external disturbances based on recursive terminal sliding mode method. Nonlinear Dyn. 80(1–2), 669–683 (2015)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Anggraeni, P., Defoort, M., Djemai, M., Zuo, Z.: Fixed-time tracking control of chained-form nonholonomic system with external disturbances. In: 5th International Conference on Control Engineering and Information Technology (CEIT), Sousse, Tunisie (2017)Google Scholar
  22. 22.
    Sanchez-Torres, J.D., Defoort, M., Munoz-Vazquez, A.J.: Predefined-time stabilization of a class of nonholonomic systems. Int. J. Control (2019).  https://doi.org/10.1080/00207179.2019.1569262
  23. 23.
    Shahvali, M., Pariz, N., Akbariyan, M.: Distributed finite-time control for arbitrary switched nonlinear multi-agent systems: an observer-based approach. Nonlinear Dyn. 94, 2127–2142 (2018)Google Scholar
  24. 24.
    Du, H., Wen, G., Yu, X., Li, S., Chen, M.Z.: Finite-time consensus of multiple nonholonomic chained-form systems based on recursive distributed observer. Automatica 62, 236–242 (2015)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Cheng, Y., Jia, R., Du, H., Wen, G., Zhu, W.: Robust finite-time consensus formation control for multiple nonholonomic wheeled mobile robots via output feedback. Int. J. Robust Nonlinear Control 28(6), 2082–2096 (2018)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Cruz-Zavala, E., Moreno, J.A., Fridman, L.: Uniform second-order sliding mode observer for mechanical systems. In: 2010 11th International Workshop on Variable Structure Systems (VSS), pp. 14–19. IEEE (2010)Google Scholar
  27. 27.
    Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106 (2012)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Jimnez-Rodrguez, E., Snchez-Torres, J.D., Loukianov, A.G.: On optimal predefined-time stabilization. Int. J. Robust Nonlinear Control 27(17), 3620–3642 (2017)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Lin, X., Zheng, Y.: Finite-time consensus of switched multiagent systems. IEEE Trans. Syst. Man Cybern. Syst. 47(7), 1535–1545 (2017)Google Scholar
  30. 30.
    Defoort, M., Polyakov, A., Demesure, G., Djemai, M., Veluvolu, K.: Leader–follower fixed-time consensus for multi-agent systems with unknown non-linear inherent dynamics. IET Control Theory Appl. 9(14), 2165–2170 (2015)MathSciNetGoogle Scholar
  31. 31.
    Hong, H., Yu, W., Wen, G., Yu, X.: Distributed robust fixed-time consensus for nonlinear and disturbed multiagent systems. IEEE Trans. Syst. Man Cybern. Syst. 47(7), 1464–1473 (2017)Google Scholar
  32. 32.
    Khanzadeh, A., Pourgholi, M.: Fixed-time sliding mode controller design for synchronization of complex dynamical networks. Nonlinear Dyn. 88(4), 2637–2649 (2017)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Zuo, Z.: Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica 54, 305–309 (2015)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Fu, J., Wang, J.: Fixed-time coordinated tracking for second-order multi-agent systems with bounded input uncertainties. Syst. Control Lett. 93, 1–12 (2016)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Huang, Y., Jia, Y.: Fixed-time consensus tracking control of second-order multi-agent systems with inherent nonlinear dynamics via output feedback. Nonlinear Dyn. 91(2), 1289–1306 (2018)zbMATHGoogle Scholar
  36. 36.
    Zuo, Z., Tian, B., Defoort, M., Ding, Z.: Fixed-time consensus tracking for multiagent systems with high-order integrator dynamics. IEEE Trans. Autom. Control 63(2), 563–570 (2018)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Tian, B., Lu, H., Zuo, Z., Wang, H.: Fixed-time stabilization of high-order integrator systems with mismatched disturbances. Nonlinear Dyn. 94, 2889–2899 (2018)Google Scholar
  38. 38.
    Liu, X., Ho, D.W., Song, Q., Cao, J.: Finite-/fixed-time robust stabilization of switched discontinuous systems with disturbances. Nonlinear Dyn. 90(3), 2057–2068 (2017)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Filipov, A.F.: Differential equations with discontinuous right-hand sides. In: American Mathematical Society, vol. 42, pp. 191–231 (1964)Google Scholar
  40. 40.
    Parsegov, S., Polyakov, A., Shcherbakov, P.: Nonlinear fixed-time control protocol for uniform allocation of agents on a segment. In: 2012 IEEE 51st Annual Conference Decision and Control (CDC), pp. 7732–7737 (2012)Google Scholar
  41. 41.
    Defoort, M., Palos, J., Kokosy, A., Floquet, T., Perruquetti, W.: Performance-based reactive navigation for non-holonomic mobile robots. Robotica 27(2), 281–290 (2009)Google Scholar
  42. 42.
    Menard, T., Moulay, E., Perruquetti, W.: Fixed-time observer with simple gains for uncertain systems. Automatica 81, 438–446 (2017)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.LAMIH UMR CNRS 8201Université Polytechnique Hauts-de-FranceValenciennesFrance
  2. 2.Seventh Research Division Science and Technology on Aircraft Control LaboratoryBeihang UniversityBeijingChina

Personalised recommendations