Advertisement

Nonlinear Dynamics

, Volume 96, Issue 4, pp 2681–2692 | Cite as

Finite-time reliable attitude tracking control design for nonlinear quadrotor model with actuator faults

  • S. Harshavarthini
  • R. SakthivelEmail author
  • Choon Ki AhnEmail author
Original Paper
  • 227 Downloads

Abstract

This paper is focused on a finite-time reliable control design for nonlinear quadrotor attitude dynamic model against the actuator faults and external disturbances. By the utilization of an appropriate Lyapunov–Krasovskii functional, a finite-time performance analysis criterion is derived to obtain the robust reliable tracking control design for quadrotor dynamic model. Then, a fault-tolerant tracking control is designed such that the attitude of the quadrotor is reliable in the sense that it is finite-time bounded and satisfies the suggested mixed \(H_\infty \) and passivity performance index under given constraints. Also, the finite-time fault-tolerant controller gain is derived by solving the obtained linear matrix inequalities based on the convex optimization technique. Finally, simulation results are provided to verify the effectiveness and robustness of the proposed control design law.

Keywords

Nonlinear quadrotor attitude dynamic model Fault-tolerant control Finite-time boundedness Mixed \(H_\infty \) and passivity performance 

Notes

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

References

  1. 1.
    Zhang, R., Quan, Q., Cai, K.Y.: Attitude control of a quadrotor aircraft subject to a class of time-varying disturbances. IET Control Theory Appl. 5, 1140–1146 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Tang, Y.R., Xiao, X., Li, Y.: Nonlinear dynamic modeling and hybrid control design with dynamic compensator for a small-scale UAV quadrotor. Measurement 109, 51–64 (2017)CrossRefGoogle Scholar
  3. 3.
    Alexis, K., Nikolakopoulos, G., Tzes, A.: Experimental constrained optimal attitude control of a quadrotor subject to wind disturbances. Int. J. Control Autom. Syst. 12, 1289–1302 (2014)CrossRefzbMATHGoogle Scholar
  4. 4.
    Modirrousta, A., Khodabandeh, M.: Adaptive non-singular terminal sliding mode controller: new design for full control of the quadrotor with external disturbances. Trans. Inst. Meas. Control 39, 371–383 (2017)CrossRefGoogle Scholar
  5. 5.
    Xu, J., Lim, C.C., Shi, P.: Sliding mode control of singularly perturbed systems and its application in quad-rotors. Int. J. Control.  https://doi.org/10.1080/00207179.2017.1393102
  6. 6.
    Kim, S-K., Ahn, C.K.: Auto-Tuner based controller for quadcopter attitude tracking applications. Trans. Circuits Syst. II.  https://doi.org/10.1109/TCSII.2019.2896591
  7. 7.
    Liu, H., Li, D., Zuo, Z., Zhong, Y.: Robust three-loop trajectory tracking control for quadrotors with multiple uncertainties. IEEE Trans. Ind. Electron. 63, 2263–2274 (2016)Google Scholar
  8. 8.
    Zhao, B., Xian, B., Zhang, Y., Zhang, X.: Nonlinear robust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology. IEEE Trans. Ind. Electron. 62, 2891–2902 (2015)CrossRefGoogle Scholar
  9. 9.
    Yu, Y., Wang, Q., Sun, C., Liu, H.: Robust compensator with constraints for attitude manoeuvres of a quadrotor subject to unknown stochastic input delays. J. Control Decis.  https://doi.org/10.1080/23307706.2018.1502054
  10. 10.
    Wang, C., Song, B., Huang, P., Tang, C.: Trajectory tracking control for quadrotor robot subject to payload variation and wind gust disturbance. J. Intell. Robot. Syst. 83, 315–333 (2016)CrossRefGoogle Scholar
  11. 11.
    Xu, J., Shi, P., Lim, C.-C., Cai, C., Zou, Y.: Reliable tracking control for under-actuated quadrotors with wind disturbances. IEEE Trans. Syst. Man Cybern. Syst.  https://doi.org/10.1109/TSMC.2017.2782662
  12. 12.
    Sakthivel, R., Saravanakumar, T., Kaviarasan, B., Lim, Y.: Finite-time dissipative based fault-tolerant control of Takagi–Sugeno fuzzy systems in a network environment. J. Frankl. Inst. 354, 3430–3454 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Liu, H., Shi, P., Karimi, H.R., Chadli, M.: Finite-time stability and stabilisation for a class of nonlinear systems with time-varying delay. Int. J. Syst. Sci. 47, 1433–1444 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Huang, X., Yan, Y., Huang, Z.: Finite-time control of under actuated spacecraft hovering. Control Eng. Pract. 68, 46–62 (2017)CrossRefGoogle Scholar
  15. 15.
    Sakthivel, R., Santra, S., Kaviarasan, B., Park, J.H.: Finite-time sampled-data control of permanent magnet synchronous motor systems. Nonlinear Dyn. 86, 2081–2092 (2016)CrossRefzbMATHGoogle Scholar
  16. 16.
    Du, H., Zhu, W., Wen, G., Wu, D.: Finite-time formation control for a group of quadrotor aircraft. Aerosp. Sci. Technol. 69, 609–616 (2017)CrossRefGoogle Scholar
  17. 17.
    Zhai, D.-H., Xia, Y.: Finite-time control of teleoperation systems with input saturation and varying time delays. IEEE Trans. Syst. Man Cybern. Syst. 47, 1522–1534 (2017)CrossRefGoogle Scholar
  18. 18.
    Jin, X.: Adaptive finite-time fault tolerant tracking control for a class of MIMO nonlinear systems with output constraints. Int. J. Robust Nonlinear Control 27, 722–741 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wang, Z., Lu, R., Wang, H.: Finite-time trajectory tracking control of a class of nonlinear discrete-time systems. IEEE Trans. Syst. Man Cybern. Syst. 47, 1679–1687 (2017)CrossRefGoogle Scholar
  20. 20.
    Jin, X.: Adaptive decentralized finite-time output tracking control for MIMO interconnected nonlinear systems with output constraints and actuator faults. Int. J. Robust Nonlinear Control. 28, 1808–1829 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Wang, F., Zhang, X., Chen, B., Lin, C., Li, X., Zhang, J.: Adaptive finite-time tracking control of switched nonlinear systems. Inf. Sci. 421, 126–135 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wang, Z., Man, Y.: Sufficient and necessary conditions on finite-time tracking. IEEE Trans. Syst. Man Cybern. Syst 47, 3331–3339 (2017)CrossRefGoogle Scholar
  23. 23.
    Elahi, A., Alfi, A.: Finite-time \(H_\infty \) control of uncertain networked control systems with randomly varying communication delays. ISA Trans. 69, 65–88 (2017)CrossRefGoogle Scholar
  24. 24.
    Su, Y., Zheng, C., Mercorelli, P.: Global finite-time stabilization of planar linear systems with actuator saturation. IEEE Trans. Circuits Syst. II Express Briefs 64, 947–951 (2017)CrossRefGoogle Scholar
  25. 25.
    Jin, X.: Fault tolerant finite-time leader follower formation control for autonomous surface vessels with LOS range and angle constraints. Automatica 68, 228–236 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sakthivel, R., Kaviarasan, B., Ahn, C.K., Karimi, H.R.: Observer and stochastic faulty actuator-based reliable consensus protocol for multi-agent system. IEEE Trans. Syst. Man Cybern. Syst. 48, 2383–2393 (2018)CrossRefGoogle Scholar
  27. 27.
    Zhao, Z., Yang, J., Li, S., Yu, X., Wang, Z.: Continuous output feedback TSM control for uncertain systems with a DC–DC inverter example. IEEE Trans. Circuits Syst. II: Express Briefs 65, 71–75 (2018)CrossRefGoogle Scholar
  28. 28.
    Sakthivel, R., Ahn, C.K., Joby, M.: Fault-tolerant resilient control for fuzzy fractional order systems. IEEE Trans. Syst. Man Cybern. Syst.  https://doi.org/10.1109/TSMC.2018.2835442
  29. 29.
    Zhang, R., Qiao, J., Li, T., Guo, L.: Robust fault-tolerant control for flexible spacecraft against partial actuator failures. Nonlinear Dyn. 76, 1753–1760 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Tian, E., Wang, Z., Zou, L., Yue, D.: Probability-constrained filtering for a class of nonlinear systems with improved static event-triggered communication. Int. J. Robust Nonlinear Control 29, 1484–1498 (2019)CrossRefzbMATHGoogle Scholar
  31. 31.
    Jin, X.: Adaptive fault-tolerant tracking control for a class of stochastic nonlinear systems with output constraint and actuator faults. Syst. Control Lett. 107, 100–109 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Li, X., Ahn, C.K., Lu, D., Guo, S.: Robust simultaneous fault estimation and non-fragile output feedback fault-tolerant control for Markovian jump systems. IEEE Trans. Syst. Man Cybern. Syst.  https://doi.org/10.1109/TSMC.2018.2828123
  33. 33.
    Tian, E., Yue, D., Yang, T.C., Gu, Z., Lu, G.: T-S Fuzzy model-based robust stabilization for networked control systems with probabilistic sensor and actuator failure. IEEE Trans. Fuzzy Syst. 19, 553–561 (2011)CrossRefGoogle Scholar
  34. 34.
    Zheng, Q., Zhang, H., Ling, Y., Guo, X.: Mixed \(H_\infty \) and passive control for a class of nonlinear switched systems with average dwell time via hybrid control approach. J. Frankl. Inst. 355, 1156–1175 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zhu, B., Suo, M., Chen, Y., Zhang, Z., Li, S.: Mixed \(H_\infty \) and passivity control for a class of stochastic nonlinear sampled-data systems. J. Frankl. Inst. 355, 3310–3329 (2018)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Applied MathematicsBharathiar UniversityCoimbatoreIndia
  2. 2.School of Electrical EngineeringKorea UniversitySeoulSouth Korea

Personalised recommendations