Advertisement

Nonlinear Dynamics

, Volume 96, Issue 4, pp 2613–2626 | Cite as

Identification of fractional Hammerstein system with application to a heating process

  • Karima HammarEmail author
  • Tounsia Djamah
  • Maamar Bettayeb
Original Paper

Abstract

In this paper, fractional Hammerstein system identification is considered, where the linear block is of fractional order. The original discrete Hammerstein system is first converted to a fractional polynomial nonlinear state-space model (PNLSS), which allows a better parameterization of the model. An output-error identification approach is developed based on the robust Levenberg–Marquardt algorithm, whose nevralgic point is the calculation of parametric sensitivity functions. These last are developed as a multivariable fractional PNLSS model which effectively reduces the computational effort. Various simulations are used to test the method’s efficiency and its statistical performance is analyzed using Monte Carlo simulation. Finally, the method is evaluated through a heating experimental benchmark. The obtained results show good agreement with the real system outputs.

Keywords

Nonlinear system Fractional order system Hammerstein model Polynomial nonlinear state-space model Output-error method 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science, Amsterdam (2006)zbMATHGoogle Scholar
  2. 2.
    Podlubny, I.: Fractional-order systems and \(PI^{\lambda }D^{\mu }\) controllers. IEEE Trans. Autom. Contr. 44(1), 208–214 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Machado, J.T., Guest, J.A.T.: Special issue on fractional calculus and applications. Nonlinear Dyn. 29(1–4), 3–22 (2002)Google Scholar
  4. 4.
    Mansouri, R., Bettayeb, M., Djamah, T., Djennoune, S.: Vector fitting fractional system identification using particle swarm optimization. Appl. Math. Comput. 206, 510–520 (2008)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Dai, Y., Wei, Y., Hu, Y., Wang, Y.: Modulating function-based identification for fractional order systems. Neurocomputing 173, 1959–1966 (2016)CrossRefGoogle Scholar
  6. 6.
    Cui, R., Wei, Y., Chen, Y., Cheng, S., Wang, Y.: An innovative parameter estimation for fractional-order systems in the presence of outliers. Nonlinear Dyn. 89(1), 453–463 (2017)zbMATHCrossRefGoogle Scholar
  7. 7.
    Cois, O., Oustaloup, A., Poinot, T., Battaglia, J. L.: Fractional state variable filter for system identification by fractional model. In: Proceedings of European Control Conference (ECC), Porto, Portugal (2001)Google Scholar
  8. 8.
    Djamah, T., Mansouri, R., Djennoune, S., Bettayeb, M.: Heat transfer modeling and identification using fractional order state space models. J. Eur. Des. Syst. Autom. 42(6–8), 939–951 (2008)zbMATHGoogle Scholar
  9. 9.
    Djamah, T., Bettayeb, M., Djennoune, S.: Identification of multivariable fractional order systems. Asian J. Control 15(3), 741–750 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Chen, F., Ding, F.: Recursive least squares identification algorithms for multiple-input nonlinear Box–Jenkins systems using the maximum likelihood principle. J. Comput. Nonlinear Dyn. 11(2), 021005 (2016)CrossRefGoogle Scholar
  11. 11.
    Zhao, W., Chen, H.F.: Identification of Wiener, Hammerstein, and NARX systems as Markov chains with improved estimates for their nonlinearities. Syst. Control Lett. 61(12), 1175–1186 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Jia, L., Li, X., Chiu, M.S.: The identification of neuro-fuzzy based MIMO Hammerstein model with separable input signals. Neurocomputing 174, 530–541 (2016)CrossRefGoogle Scholar
  13. 13.
    Schoukens, M., Pintelon, R., Rolain, Y.: Identification of Wiener-Hammerstein systems by a nonparametric separation of the best linear approximation. Automatica 50(2), 628–634 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Smith, J.G., Kamat, S., Madhavan, K.P.: Modeling of pH process using wavelet based Hammerstein model. J. Process Contr. 17(6), 551–561 (2007)CrossRefGoogle Scholar
  15. 15.
    Hunter, I.W., Korenberg, M.J.: The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol. Cybern. 55(2–3), 135–144 (1986)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Wang, D.: Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models. Appl. Math. Lett. 57, 13–19 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Wang, D., Ding, F., Ximei, L.: Least squares algorithm for an input nonlinear system with a dynamic subspace state space model. Nonlinear Dyn. 75(1–2), 49–61 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Zhang, H.T., Li, H.X., Chen, G.: Dual-mode predictive control algorithm for constrained Hammerstein systems. Int. J. Control 81(10), 1609–1625 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Deng, K., Ding, F.: Newton iterative identification method for an input nonlinear finite impulse response system with moving average noise using the key variables separation technique. Nonlinear Dyn. 76(2), 1195–1202 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Shen, Q., Ding, F.: Least squares identification for Hammerstein multi-input multi-output systems based on the key-term separation technique. Circ. Syst. Signal Process. 35(10), 3745–3758 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Chen, J., Zhang, Y., Ding, R.: Gradient-based parameter estimation for input nonlinear systems with ARMA noises based on the auxiliary model. Nonlinear Dyn. 72(4), 865–871 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Cheng, S., Wei, Y., Sheng, D., Chen, Y., Wang, Y.: Identification for Hammerstein nonlinear ARMAX systems based on multi-innovation fractional order stochastic gradient. Signal Process. 142, 1–10 (2018)CrossRefGoogle Scholar
  23. 23.
    Rahmani, M.R., Farrokhi, M.: Identification of neuro-fractional Hammerstein systems: a hybrid frequency-/time-domain approach. Soft Comput. 22(24), 8097–8106 (2017)zbMATHCrossRefGoogle Scholar
  24. 24.
    Liao, Z., Zhu, Z., Liang, S., Peng, C., Wang, Y.: Subspace identification for fractional order Hammerstein systems based on instrumental variables. Int. J. Control Autom. 10(5), 947–953 (2012)CrossRefGoogle Scholar
  25. 25.
    Ivanov, D.V.: Identification discrete fractional order Hammerstein systems. In: International Siberian Conference on Control and Communications (SIBCON), Omsk, Russia (2015)Google Scholar
  26. 26.
    Aoun, M., Malti, R., Olivier, C., Oustaloup, A.: System identification using fractional Hammerstein models. IFAC Proc. 35(1), 265–269 (2002)CrossRefGoogle Scholar
  27. 27.
    Sersour, L., Djamah, T., Bettayeb, M.: Nonlinear system identification of fractional Wiener models. Nonlinear Dyn. 92(4), 1493–1505 (2018)CrossRefGoogle Scholar
  28. 28.
    Zhao, Y., Li, Y., Zhou, F., Zhou, Z., Chen, Y.: An iterative learning approach to identify fractional order KiBaM model. IEEE/CAA J. Autom. Sin. 4(2), 322–331 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zhao, Y., Li, Y., Chen, Y.: Complete parametric identification of fractional order Hammerstein systems. In: Proceedings of International Conference on Fractional Differentiation and Its Applications (ICFDA), Catania, Italy (2014)Google Scholar
  30. 30.
    Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, San Fransisco (1993)zbMATHGoogle Scholar
  31. 31.
    Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl. Mech. Rev. 63(1), 010801 (2010)CrossRefGoogle Scholar
  32. 32.
    Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Inc., Chicago (2006)Google Scholar
  33. 33.
    Oldham, K.B., Spanier, J.: Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results the Fractional Calculus. Academic Press, New York (1974)Google Scholar
  34. 34.
    Zhao, Y., Li, Y., Zhou, F.: Adaptive memory identification of fractional order systems. Discontin. Nonlinearity Complex. 4(4), 413–428 (2015)zbMATHCrossRefGoogle Scholar
  35. 35.
    Dzieliński, A., Sierociuk, D.: Stability of discrete fractional order state-space systems. J. Vib. Control 14(9–10), 1543–1556 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Paduart, J., Lauwers, L., Pintelon, R., Schoukens, J.: Identification of a Wiener-Hammerstein system using the polynomial nonlinear state space approach. Control Eng. Pract. 20(11), 1133–1139 (2012)CrossRefGoogle Scholar
  37. 37.
    Marquardt, D.W.: An algorithm for least squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 413–441 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    De Moor, B.L.R.: Daisy: database for the identification of systems, department of electrical engineering (ed) ESAT/SISTA, KU Leuven, Belgium (2015). http://homes.Esat.Kuleuven.Be/smc/daisy

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Karima Hammar
    • 1
    Email author
  • Tounsia Djamah
    • 1
  • Maamar Bettayeb
    • 2
  1. 1.Laboratoire de Conception et Conduite des Systèemes de Production (L2CSP)UMMTOTizi-OuzouAlgeria
  2. 2.Department of Electrical and Computer Engineering, University of Sharjah UAE and (CEIES)King Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations