Advertisement

Event-triggered neural adaptive failure compensation control for stochastic systems with dead-zone output

  • Jianhui Wang
  • Zhi LiuEmail author
  • C. L. Philip Chen
  • Yun Zhang
Original Paper
  • 44 Downloads

Abstract

This paper investigates event-triggered adaptive compensation control in the face of uncertain stochastic nonlinear system with actuator failure and output dead-zone. It is still an arduous task and challenge to design a compensation controller for uncertain stochastic nonlinear system. In order to avoid damaging output caused by the nonlinearity of the system, blended neural network integration with Nussbaum-type function is proposed. It is established to ensure the provision of the tracking error constraints, which is based on backstepping Lyapunov function technique. Additionally, system transmission resource constraints and actuator failure problems exist simultaneously in the system, which is extremely challenging for control design. More transmission resources are demanded when the system is suffered with actuator failures, while the system transmission resource is limited. Thus, the requirements cannot be achieved. It is difficult and challenged to ensure the system tracking performance. Using the proposed event-triggered controller and combining the Lyapunov synthesis, a novel optimization algorithm is deduced to guarantee the closed-loop system stability and the convergence of the tracking error. The simulation results illustrate the effectiveness of the proposed neural networks adaptive control approach.

Keywords

Neural networks Actuator failure Event-triggered Dead-zone output 

Notes

Acknowledgements

The authors would like to thank the Associate Editor and the anonymous reviewers for a number of constructive comments that have improved the presentation of this paper. This work was supported in part by the National Natural Science Foundation of China under Grant 61573108, in part by the Natural Science Foundation of Guangdong Province 2016A030313715, and in part by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme.

Compliance with ethical standards

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

  1. 1.
    Chen, C.L.P., Liu, Y.J., Wen, G.X.: Fuzzy neural network-based adaptive control for a class of uncertain nonlinear stochastic systems. IEEE Trans. Cybern. 44(5), 583–593 (2014)CrossRefGoogle Scholar
  2. 2.
    Chen, C.L.P., Wen, G.X., Liu, Y.J., Liu, Z.: Observer-based adaptive backstepping consensus tracking control for high-order nonlinear semistrict-feedback multiagent systems. IEEE Trans. Cybern. 46(7), 1591–1601 (2016)CrossRefGoogle Scholar
  3. 3.
    Chen, B., Lin, C., Liu, X., Liu, K.: Observer-based adaptive fuzzy control for a class of nonlinear delayed systems. IEEE Trans. Syst. Man Cybern. Syst. 46(1), 27–36 (2016)CrossRefGoogle Scholar
  4. 4.
    Chen, B., Liu, X., Liu, K., Lin, C.: Fuzzy-approximation-based adaptive control of strict-feedback nonlinear systems with time delays. IEEE Trans. Fuzzy Syst. 18(5), 883–892 (2010)CrossRefGoogle Scholar
  5. 5.
    Chen, B., Liu, X., Liu, K., Lin, C.: Novel adaptive neural control design for nonlinear MIMO time-delay systems. Automatica 45(6), 1554–1560 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cai, J., Wen, C., Su, H., Liu, Z.: Robust adaptive failure compensation of hysteretic actuators for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 58(9), 2388–2394 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cai, J.P., Wen, C.Y., Su, H.Y.: Adaptive inverse control for parametric strict feedback systems with unknown failures of hysteretic actuators. IEEE Int. J. Robust Nonlinear Control 25(6), 824–841 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fan, H., Liu, B., Shen, Y., Wang, W.: Adaptive failure compensation control for uncertain systems with stochastic actuator failures. IEEE Trans. Autom. Control 59(3), 808–814 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ge, S.S., Wang, C.: Adaptive neural control of uncertain MIMO nonlinear systems. IEEE Trans. Neural Netw. 15(3), 674–692 (2004)CrossRefGoogle Scholar
  10. 10.
    Ge, Y., Wang, J., Zhang, L., Wang, B., Li, C.: Robust fault tolerant control of distributed networked control systems with variable structure. J. Franklin Inst. 353(12), 2553–2575 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Deng, H., Krsti, M.: Stochastic nonlinear stabilization i: a backstepping design. Syst. Control Lett. 32, 143–150 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Krstic, M., Kokotovic, P.V., Kanellakopoulos, I.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)zbMATHGoogle Scholar
  13. 13.
    Li, T.S., Wang, D., Feng, G., Tong, S.C.: A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems. IEEE Trans. Syst. Man. Cybern. Part B (Cybern.) 40(3), 915–927 (2010)CrossRefGoogle Scholar
  14. 14.
    Lee, H.: Robust adaptive fuzzy control by backstepping for a class of MIMO nonlinear systems. IEEE Trans. Fuzzy Syst. 19(2), 265–275 (2011)CrossRefGoogle Scholar
  15. 15.
    Li, Y., Tong, S.: Adaptive fuzzy output-feedback control of purefeedback uncertain nonlinear systems with unknown dead zone. IEEE Trans. Fuzzy Syst. 22(5), 1341–1347 (2014)CrossRefGoogle Scholar
  16. 16.
    Lai, G., Liu, Z., Zhang, Y., Chen, C.L.P., Xie, S., Liu, Y.: Fuzzy adaptive inverse compensation method to tracking control of uncertain nonlinear systems with generalized actuator dead zone. IEEE Trans. Fuzzy Syst. 25(1), 191–204 (2017)CrossRefGoogle Scholar
  17. 17.
    Li, H., Bai, L., Wang, L., Zhou, Q., Wang, H.: Adaptive neural control of uncertain nonstrict-feedback stochastic nonlinear systems with output constraint and unknown dead zone. IEEE Trans. Syst. Man. Cybern. Syst. 47(8), 2048–2059 (2017)CrossRefGoogle Scholar
  18. 18.
    Li, Y.X., Yang, G.H.: Adaptive fuzzy decentralized control for a class of large-scale nonlinear systems with actuator faults and unknown dead zones. IEEE Trans. Syst. Man. Cybern. Syst. 47(50), 729–740 (2017)CrossRefGoogle Scholar
  19. 19.
    Li, Y., Tong, S.: Adaptive neural networks decentralized FTC design for nonstrict-feedback nonlinear interconnected large-scale systems against actuator faults. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2541–2554 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Liu, S.J., Zhang, J.F., Jiang, Z.P.: Decentralized adaptive outputfeedback stabilization for large-scale stochastic nonlinear systems. Automatica 43, 238–251 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Polycarpou, M.M., Mears, M.J.: Stable adaptive tracking of uncertain systems using nonlinearly parametrized on-line approximators. Int. J. Control 70(3), 363–384 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Peng, C., Han, Q.L., Yue, D.: To transmit or not to transmit: a discrete event-triggered communication scheme for networked takagisugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 21, 164–170 (2013)CrossRefGoogle Scholar
  23. 23.
    Song, B., Hedrick, J.K.: Observer-based dynamic surface control for a class of nonlinear systems: an LMI approach. IEEE Trans. Autom. Control 49(11), 1995–2001 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Song, B., Hedrick, J.K.: Robust stabilization and ultimate boundedness of dynamic surface control systems via convex optimization. IEEE Trans. Autom. Control 75(12), 870–881 (2002)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Tong, S., Li, Y., Li, Y., Liu, Y.: Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems. IEEE Trans. Syst. Man. Cybern. Part B (Cybern.) 41(6), 1693–1704 (2011)CrossRefGoogle Scholar
  26. 26.
    Tee, K.P., Ge, S.S., Tay, E.H.: Barrier lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45(4), 918–927 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Tao, G., Joshi, S.M., Ma, X.: Adaptive state feedback and tracking control of systems with actuator failures. IEEE Trans. Autom. Control 46(1), 78–95 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Tao, G., Chen, S., Joshi, S.M.: An adaptive actuator failure compensation controller using output feedback. IEEE Trans. Autom. Control 47(3), 506–511 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Tang, X., Tao, G., Joshi, S.M.: Adaptive output feedback actuator failure compensation for a class of nonlinear systems. Int. J. Adapt. Control Signal Process 19(6), 419–444 (2005)CrossRefzbMATHGoogle Scholar
  30. 30.
    Tang, Y., Gao, H., Kurths, J.: Robust H1 self-triggered control of networked systems under packet dropouts. IEEE Trans. Cybern. 46, 3294–3305 (2016)CrossRefGoogle Scholar
  31. 31.
    Tong, S.C., Li, Y., Li, Y.M., Liu, Y.J.: Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems. IEEE Trans. Syst. 41, 1693–1704 (2011)Google Scholar
  32. 32.
    Tong, S., Li, Y.: Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone inputs. IEEE Trans. Fuzzy Syst. 21(1), 134–146 (2013)CrossRefGoogle Scholar
  33. 33.
    Tong, S., Wang, T., Li, Y.: Fuzzy adaptive actuator failure compensation control of uncertain stochastic nonlinear systems with unmodeled dynamics. IEEE Trans. Fuzzy Syst. 22(3), 563–574 (2014)CrossRefGoogle Scholar
  34. 34.
    Tong, S.C., Li, Y., Li, Y.M., Liu, Y.J.: Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 41, 1693–1704 (2011)CrossRefGoogle Scholar
  35. 35.
    Yi, Y., Zheng, W.X., Sun, C., Guo, L.: DOB fuzzy controller design for non-Gaussian stochastic distribution systems using two-step fuzzy identification. IEEE Trans. Fuzzy Syst. 24(2), 401–418 (2016)CrossRefGoogle Scholar
  36. 36.
    Yip, P.P., Hedrick, J.K.: Adaptive dynamic surface control: a simplified algorithm for adaptive backstepping control of nonlinear systems. Int. J. Control 71(5), 959–979 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Yang, F., Zhang, H., Hui, G., Wang, S.: Mode-independent fuzzy fault-tolerant variable sampling stabilization of nonlinear networked systems with both time-varying and random delays. Fuzzy Sets Syst. 207, 45–63 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Zhai, D., An, L., Dong, J., Zhang, Q.: Simultaneous H2/H1 fault detection and control for networked systems with application to forging equipment. Signal Process. 125, 203–215 (2016)CrossRefGoogle Scholar
  39. 39.
    Zhang, Y., Peng, P.-Y., Jiang, Z.-P.: Stable neural controller design for unknown nonlinear systems using backstepping. IEEE Trans. Neural Netw. 11(6), 1347–1360 (2000)CrossRefGoogle Scholar
  40. 40.
    Zhang, T.P., Ge, S.S.: Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs. Automatica 43(6), 1021–1033 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Zhang, T.P., Ge, S.S.: Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form. Automatica 44(7), 1895–1903 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Wang, M., Zhang, S., Chen, B., Luo, F.: Direct adaptive neural control for stabilization of nonlinear time-delay systems. Sci. China Inf. 53, 800–812 (2010)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Wang, Y.C., Zhang, H.G., Wang, Y.Z.: Fuzzy adaptive control of stochastic nonlinear systems with virtual control gain function. Acta Autom. Sin. 32, 170–178 (2006)MathSciNetGoogle Scholar
  44. 44.
    Wu, D., Sun, X.M., Wen, C., Wang, W.: Redesigned predictive eventtriggered controller for networked control system with delays. IEEE Trans. Cybern. 46, 2195–2206 (2016)CrossRefGoogle Scholar
  45. 45.
    Wang, H., Liu, X., Liu, K.: Robust adaptive neural tracking control for a class of stochastic nonlinear interconnected systems. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 510–523 (2016)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Wang, H., Chen, B., Lin, C.: Adaptive neural control for strictfeedback stochastic nonlinear systems with time-delay. Neurocomputing 77(1), 267–274 (2012)CrossRefGoogle Scholar
  47. 47.
    Wang, M., Liu, X., Shi, P.: Adaptive neural control of pure-feedback nonlinear time-delay systems via dynamic surface technique. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 41(6), 1681–1692 (2011)CrossRefGoogle Scholar
  48. 48.
    Wang, X.S., Su, C.Y., Hong, H.H.: Robust adaptive control of a class of nonlinear systems with unknown dead-zone. Automatica 3, 407–413 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Wang, W., Wen, C.: Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance. Automatica 46(12), 2082–2091 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Wang, C.L., Wen, C.Y., Lin, Y.: Decentralized adaptive backstepping control for a class of interconnected nonlinear systems with unknown actuator failures. IEEE J. Franklin Inst. 352(3), 835–850 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Wang, L.X.: Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Englewood Cliffs, Bergen County, NJ (1994)Google Scholar
  52. 52.
    Wu, L., Yang, X., Lam, H.K.: Dissipativity analysis and synthesis for discrete-time t-s fuzzy stochastic systems with time-varying delay. IEEE Trans. Fuzzy Syst. 22(2), 380–394 (2014)CrossRefGoogle Scholar
  53. 53.
    Wang, J., Liu, Z., Chen, C.L.P., Zhang, Y.: Fuzzy adaptive compensation control of uncertain stochastic nonlinear systems with actuator failures and input hysteresis. IEEE Trans. Cybern. 49(1), 2–13 (2019)CrossRefGoogle Scholar
  54. 54.
    Xie, X., Yue, D., Zhang, H., Peng, C.: Control synthesis of discretetime fuzzy systems: reducing the conservatism whilst alleviating the computational burden. IEEE Trans. Cybern. 47(9), 2480–2491 (2017)CrossRefGoogle Scholar
  55. 55.
    Xing, L., Wen, C., Liu, Z., Su, H., Cai, J.: Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 62, 2071–2076 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Xing, L., Wen, C., Liu, Z., Su, H., Cai, J.: Event-triggered adaptivecontrol for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 62, 2071–2076 (2017)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.the school of AutomationGuangdong University of TechnologyGuangzhouChina
  2. 2.the School of Mechanical and Electric EngineeringGuangzhou UniversityGuangzhouChina
  3. 3.the Faculty of Science and TechnologyUniversity of MacauMacauChina

Personalised recommendations