ELECTRE II method to deal with probabilistic linguistic term sets and its application to edge computing

  • Mingwei LinEmail author
  • Zheyu Chen
  • Huchang Liao
  • Zeshui Xu
Original Paper


The edge node selection problem in edge computing is a typical multi-criteria group decision-making problem. In this paper, we put forward an ELECTRE II method with the probabilistic linguistic information to handle the edge node selection problem. First, a novel distance measure is developed for probabilistic linguistic term sets (PLTSs) and an entropy measure is devised to measure the uncertainty degree of PLTSs. Based on the score value and entropy, a novel method is put forward to compare two PLTSs. Next, a weight-determining method for criteria based on multiple correlation coefficient and a weight-determining method for experts based on entropy theory are proposed. After that, a novel probabilistic linguistic ELECTRE II method is put forward to deal with the edge node selection problem. Comparison with previous methods is provided to verify the superiority of our method.


Probabilistic linguistic term set Correlation coefficient Multi-criteria decision making Entropy measure ELECTRE II 



This work was supported by the National Natural Science Foundation of China under Grant Nos. 61872086, 71771156, and Distinguished Young Scientific Research Talents Plan in Universities of Fujian Province (2017).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Yan, Z., Yu, X., Ding, W.: Context-aware verifiable cloud computing. IEEE Access 5, 2211–2227 (2017)CrossRefGoogle Scholar
  2. 2.
    Li, C.T., Lee, C.W., Shen, J.J.: An extended chaotic maps-based keyword search scheme over encrypted data resist outside and inside keyword guessing attacks in cloud storage services. Nonlinear Dyn. 80(3), 1601–1611 (2015)CrossRefzbMATHGoogle Scholar
  3. 3.
    Xiong, J.B., Ren, J., Chen, L., Yao, Z.Q., Lin, M.W., Wu, D.P., Niu, B.: Enhancing privacy and availability for data clustering in intelligent electrical service of IoT. IEEE IoT J. (2018). Google Scholar
  4. 4.
    Laghari, A.A., He, H., Khan, A., Kumar, N., Kharel, P.: Quality of experience framework for cloud computing (QoC). IEEE Access 6, 64876–64890 (2018)CrossRefGoogle Scholar
  5. 5.
    Abdullah, S., Amin, N.U.: Analysis of S-box image encryption based on generalized fuzzy soft expert set. Nonlinear Dyn. 79(3), 1679–1692 (2014)CrossRefGoogle Scholar
  6. 6.
    He, Y., Guo, H., Jin, M., Ren, P.: A linguistic entropy weight method and its application in linguistic multi-attribute group decision making. Nonlinear Dyn. 84(1), 399–404 (2016)CrossRefzbMATHGoogle Scholar
  7. 7.
    Qu, J.J., Ji, Z.J., Lin, C., Yu, H.S.: Fast consensus seeking on networks with antagonistic interactions. Complexity (2018). Article ID 7831317Google Scholar
  8. 8.
    Xi, J.X., Wang, C., Liu, H., Wang, Z.: Dynamic output feedback guaranteed-cost synchronization for multiagent networks with given cost budgets. IEEE Access 6, 28923–28935 (2018)CrossRefGoogle Scholar
  9. 9.
    Ji, Z.J., Yu, H.S.: A new perspective to graphical characterization of multiagent controllability. IEEE Trans. Cybern. 47(6), 1471–1483 (2017)CrossRefGoogle Scholar
  10. 10.
    Xi, J.X., Wang, C., Liu, H., Wang, L.: Completely distributed guaranteed-performance consensualization for high-order multiagent systems with switching topologies. IEEE Trans. Syst. Man Cybern.: Syst. (2018).
  11. 11.
    Sun, K.K., Mou, S.S., Qiu, J.B., Wang, T., Gao, H.J.: Adaptive fuzzy control for non-triangular structural stochastic switched nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. (2018). Google Scholar
  12. 12.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8(3), 199–249 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Xu, Z.S., Wang, H.: On the syntax and semantics of virtual linguistic terms for information fusion in decision making. Inf. Fusion 34, 43–48 (2017)CrossRefGoogle Scholar
  14. 14.
    Rodriguez, R.M., Martinez, L., Herrera, F.: Hesitant fuzzy linguistic term sets for decision making. IEEE Trans. Fuzzy Syst. 20(1), 109–119 (2012)CrossRefGoogle Scholar
  15. 15.
    Lin, M.W., Xu, Z.S., Zhai, Y.L., Yao, Z.Q.: Multi-criterion group decision-making under probabilistic uncertain linguistic environment. J. Oper. Res. Soc. 69(2), 157–170 (2018)CrossRefGoogle Scholar
  16. 16.
    Pang, Q., Wang, H., Xu, Z.S.: Probabilistic linguistic term sets in multi-criterion group decision making. Inf. Sci. 369, 128–143 (2016)CrossRefGoogle Scholar
  17. 17.
    Bai, C., Zhang, R., Qian, L., Wu, Y.: Comparisons of probabilistic linguistic term sets for multi-criteria decision making. Knowl.-Based Syst. 119, 284–291 (2017)CrossRefGoogle Scholar
  18. 18.
    Liu, H., Jiang, L., Xu, Z.S.: Entropy measures of probabilistic linguistic term sets. Int. J. Comput. Intell. Syst. 11(1), 45–57 (2018)CrossRefGoogle Scholar
  19. 19.
    Liu, P., Teng, F.: Some Muirhead mean operators for probabilistic linguistic term sets and their applications to multiple criterion decision-making. Appl. Soft Comput. 68, 396–431 (2018)CrossRefGoogle Scholar
  20. 20.
    Pan, L., Ren, P.J., Xu, Z.S.: Therapeutic schedule evaluation for brain-metastasized non-small cell lung cancer with a probabilistic linguistic ELECTRE II method. Int. J. Environ. Res. Public Health 15, 1799 (2018). CrossRefGoogle Scholar
  21. 21.
    Xu, Z.S.: A method based on linguistic aggregation operators for group decision making with linguistic preference relations. Inf. Sci. 166(1–4), 19–30 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Xu, Z.S.: Multi-period multi-criterion group decision-making under linguistic assessments. Int. J. Gener. Syst. 38(8), 823–850 (2009)CrossRefzbMATHGoogle Scholar
  23. 23.
    Xu, Z.S.: Linguistic decision making: theory and methods. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  24. 24.
    Gou, X.J., Xu, Z.S.: Novel basic operational laws for linguistic terms, hesitant fuzzy linguistic term sets and probabilistic linguistic term sets. Inf. Sci. 372, 407–427 (2016)CrossRefGoogle Scholar
  25. 25.
    Liao, H.C., Xu, Z.S., Zeng, X.J., Merigo, J.M.: Qualitative decision making with correlation coefficients of hesitant fuzzy linguistic term sets. Knowl.-Based Syst. 76, 127–138 (2015)CrossRefGoogle Scholar
  26. 26.
    Zhang, Y.X., Xu, Z.S., Wang, H., Liao, H.: Consistency-based risk assessment with probabilistic linguistic preference relation. Appl. Soft Comput. 49, 817–833 (2016)CrossRefGoogle Scholar
  27. 27.
    Liao, H.C., Xu, Z.S.: Approaches to manage hesitant fuzzy linguistic information based on the cosine distance and similarity measures for HFLTSs and their application in qualitative decision making. Expert Syst. Appl. 42(12), 5328–5336 (2015)CrossRefGoogle Scholar
  28. 28.
    Bai, C., Zhang, R., Shen, S., Huang, C., Fan, X.: Interval-valued probabilistic linguistic term sets in multi-criteria group decision making. Int. J. Intell. Syst. 33(6), 1301–1321 (2018)CrossRefGoogle Scholar
  29. 29.
    Wu, X.L., Liao, H.C., Xu, Z.S., Hafezalkotob, A., Herrera, F.: Probabilistic linguistic MULTIMOORA: a multicriteria decision making method based on the probabilistic linguistic expectation function and the improved Borda rule. IEEE Trans. Fuzzy Syst. 26(6), 3688–3702 (2018)CrossRefGoogle Scholar
  30. 30.
    Zebende, G.F., da Silva Filho, A.M.: Detrended multiple cross-correlation coefficient. Phys. A: Stat. Mech. Appl. 510, 91–97 (2018)CrossRefGoogle Scholar
  31. 31.
    Qiu, J.B., Sun, K.K., Wang, T., Gao, H.J.: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst.
  32. 32.
    Wu, X.L., Liao, H.C.: An approach to quality function deployment based on probabilistic linguistic term sets and ORESTE method for multi-expert multi-criteria decision making. Inf. Fusion 43, 13–26 (2018)CrossRefGoogle Scholar
  33. 33.
    Roy, B.: ELECTRE III: Un algorithme de classements fondé sur une représentation floue des préférences en présence de critères multiples. Cahiers du Centre d’Etudes de Recherche Opérationnelle 20(1), 3–24 (1978)zbMATHGoogle Scholar
  34. 34.
    Chen, N., Xu, Z.S.: Hesitant fuzzy ELECTRE II approach: a new way to handle multi-criteria decision making problems. Inf. Sci. 292, 175–197 (2015)CrossRefGoogle Scholar
  35. 35.
    Wan, S.P., Xu, G.L., Dong, J.Y.: Supplier selection using ANP and ELECTRE II in interval 2-tuple linguistic environment. Inf. Sci. 385–386, 19–38 (2017)CrossRefGoogle Scholar
  36. 36.
    Liao, H.C., Yang, L.Y., Xu, Z.S.: Two new approaches based on ELECTRE II to solve the multiple criteria decision making problems with hesitant fuzzy linguistic term sets. Appl. Soft Comput. 63, 223–234 (2018)CrossRefGoogle Scholar
  37. 37.
    Lin, M., Chen, R., Lin, L., Li, X., Huang, J.: Buffer-aware data migration scheme for hybrid storage systems. IEEE Access 6, 47646–47656 (2018)CrossRefGoogle Scholar
  38. 38.
    Lin, B., Guo, W.Z., Xiong, N.X., Chen, G.L., Vasilakos, A.V., Zhang, H.: A pretreatment workflow scheduling approach for big data applications in multi-cloud environments. IEEE Trans. Netw. Serv. Manag. 13(3), 581–594 (2016)CrossRefGoogle Scholar
  39. 39.
    Duckstein, L., Gershon, M.: Multicriterion analysis of a vegetation management problem using ELECTRE II. Appl. Math. Model. 7, 254–261 (1983)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of Mathematics and InformaticsFujian Normal UniversityFuzhouChina
  2. 2.Digital Fujian Internet-of-Things Laboratory of Environmental MonitoringFujian Normal UniversityFuzhouChina
  3. 3.Business SchoolSichuan UniversityChengduChina

Personalised recommendations