Nonlinear Dynamics

, Volume 96, Issue 3, pp 2115–2124 | Cite as

Collective dynamics and energy aspects of star-coupled Hindmarsh–Rose neuron model with electrical, chemical and field couplings

  • K. Usha
  • P. A. SubhaEmail author
Original Paper


In this work, we study the collective dynamics and energy aspects of star-coupled Hindmarsh–Rose neuron model with memristor. In the presence of chemical coupling and field effects, the system exhibits desynchrony, synchrony and drum head mode states. The electrically coupled network with field effects shows desynchronized and synchronized regions. The parameter space has been plotted to explain the transition from desynchronized state to synchronized and drum head mode regions. The time evolution of membrane potential in the absence of synaptic coupling reveals that field coupling regulates the electrical modes of the system. Based on Helmholtz theorem, the Hamilton energy function associated with the system has been derived. The average energy variation of chemically coupled neurons shows two important regions. A fluctuating regime corresponding to the desynchronized state and a linearly increasing regime corresponding to the synchronized state with amplitude death have been observed. In electrically coupled star network, the average energy returns to its initial uncoupled value in the synchronized state. The study finds applications in identical and nonidentical networks of chaotic oscillators with different coupling topologies.


HR model Memristor Hamilton energy function Average energy 


05.45.Xt 05.45.-a 



UK would like to acknowledge University Grants Commission, India, for providing financial assistance through JRF scheme for doing the research work. PAS would like to acknowledge DST, India, for their financial assistance through FIST program.

Compliance with ethical standards

Conflict of interest:

The authors declare that they have no conflict of interest.


  1. 1.
    Belykh, I., Hasler, M.: Mesoscale and clusters of synchrony in networks of bursting neurons. Chaos 21, 016106 (2011)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Pikovsky, A., Rosenblum, M.: Dynamics of globally coupled oscillators: progress and perspectives. Chaos 25, 097616 (2015)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Omelchenko, I., Omelchenko, O.E., Hovel, P., Scholl, E.: When nonlocal coupling between oscillators becomes stronger: patched synchrony or multi-chimera states. Phys. Rev. Lett. 110, 224101 (2013)Google Scholar
  4. 4.
    El-Nashar, H.F., Zhang, Y., Cerdeira, H.A., Ibiyinka, A.F.: Synchronization in a chain of nearest neighbors coupled oscillators with fixed ends. Chaos 13, 1216 (2003)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Pereda, A.E.: Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15(4), 250–263 (2014)Google Scholar
  6. 6.
    Veenstra, R.D.: Cell Physiology, 4th edn. Academic Press, New York (2012)Google Scholar
  7. 7.
    Thottil, S.K., Ignatius, R.P.: Influence of memristor and noise on h–r neurons. Nonlinear Dyn. 95(1), 239–257 (2018)Google Scholar
  8. 8.
    Xu, Y., Ying, H., Jia, Y., Ma, J., Hayat, T.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7, 43452 (2017)Google Scholar
  9. 9.
    Xu, Y., Jia, Y., Ma, J., Hayat, T., Alsaedi, A.: Collective responses in electrical activities of neurons under field coupling. Sci. Rep. 8, 1349 (2018)Google Scholar
  10. 10.
    Hrg, D.: Synchronization of two Hindmarsh–Rose neurons with unidirectional coupling. Neural Netw. 40, 73–79 (2013)zbMATHGoogle Scholar
  11. 11.
    Ali, M.K.: Synchronization of a chaotic map in the presence of common noise. Phys. Rev. E 55, 4804 (1997)Google Scholar
  12. 12.
    Andrade, V., Davidchack, R.L., Lai, Y.C.: Noise scaling of phase synchronization of chaos. Phys. Rev. E 61, 3230 (2000)Google Scholar
  13. 13.
    Abrams, D.M., Strogatz, S.H.: Chimera states for coupled oscillators. Phys. Rev. Lett. 93, 174102 (2004)Google Scholar
  14. 14.
    Wang, Z., Shi, X.: Lag synchronization of multiple identical Hindmarsh–Rose neuron models coupled in a ring structure. Nonlinear Dyn. 60(3), 375–383 (2010)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Shi, X., Wang, Z.: Adaptive synchronization of time delay hindmarsh–rose neuron system via self-feedback. Nonlinear Dyn. 69(4), 2147–2153 (2012)MathSciNetGoogle Scholar
  16. 16.
    Pecora, L.M., Carroll, T.L.: Synchronization stability in coupled oscillator arrays: solution for arbitrary configurations. Int. J. Bifurcat. Chaos 10(2), 273–290 (1999)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Usha, K., Subha, P.A., Nayak, C.R.: The route to synchrony via drum head mode and mixed oscillatory state in star coupled Hindmarsh–Rose neural network. Chaos Solitons Fractals 108, 25–31 (2018)zbMATHGoogle Scholar
  18. 18.
    Jonq, J., Yu-Hao, L.: Cluster synchronization in networks of neurons with chemical synapses. Chaos 24, 013110 (2014)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Xu, F., Zhang, J., Fang, T., Huang, S., Wang, M.: Synchronous dynamics in neural system coupled with memristive synapse. Nonlinear Dyn. 92(3), 13951402 (2018)Google Scholar
  20. 20.
    Hu, X., Liu, C., Liu, L., Ni, J., Yao, Y.: Chaotic dynamics in a neural network under electromagnetic radiation. Nonlinear Dyn. 91(3), 1541–1554 (2017)Google Scholar
  21. 21.
    Lv, M., Wang, C., Ren, G., Ma, J., Song, X.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85(3), 1479–1490 (2016)Google Scholar
  22. 22.
    Xu, Y., Jia, Y., Kirunda, J.B., Shen, J., Ge, M., Lu, L., Pei, Q.: Dynamic behaviors in coupled neuron system with the excitatory and inhibitory autapse under electromagnetic induction. Complexity 2018, 3012743 (2018)Google Scholar
  23. 23.
    Rostami, Z., Jafari, S., Perc, M., Slavinec, M.: Elimination of spiral waves in excitable media by magnetic induction. Nonlinear Dyn. 94(1), 679692 (2018)Google Scholar
  24. 24.
    Xu, Y., Jia, Y., Ge, M., Lu, L., Yang, L., Zhan, X.: Effects of ion channel blocks on electrical activity of stochastic hodgkin-huxley neural network under electromagnetic induction. Neurocomputing 283, 196–204 (2018)Google Scholar
  25. 25.
    Ge, M., Jia, Y., Kirunda, J.B., Xu, Y., Shen, J., Lu, L., Liu, Y., Pei, Q., Zhan, X., Yang, L.: Propagation of firing rate by synchronization in a feed-forward multilayer hindmarsh–rose neural network. Neurocomputing 320, 60–68 (2018)Google Scholar
  26. 26.
    Lu, L., Jia, Y., Kirunda, J.B., Xu, Y., Ge, M., Pei, Q., Yang, L.: Effects of noise and synaptic weight on propagation of subthreshold excitatory postsynaptic current signal in a feed-forward neural network. Nonlinear Dyn. (2019)
  27. 27.
    Xu, Y., Jia, Y., Wang, H., Liu, Y., Wang, P., Zhao, Y.: Spiking activities in chain neural network driven by channel noise with field coupling. Nonlinear Dyn. (2019)
  28. 28.
    Torrealdea, F.J., Sarasola, C., d’Anjou, A.: Energy consumption and information transmission in model neurons. Chaos Solitons Fractals 40, 60–68 (2009)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Guan, W., Yi, S., Quan, Y.: Exponential synchronization of coupled memristive neural networks via pinning control. Chin. Phys. B 22(5), 050504 (2013)Google Scholar
  30. 30.
    Wang, Y., Wang, Z.D., Wang, W.: Dynamical behaviors of periodically forced hindmarsh-rose neural model: the role of excitability and ‘intrinsic’ stochastic resonance. J. Phys. Soc. Jpn. 69, 276–283 (2000)Google Scholar
  31. 31.
    Sarasola, C., Torrealdea, F.J., d’Anjou, A., Moujahid, A., Grana, M.: Energy balance in feedback synchronization of chaotic systems. Phys. Rev. 69, 011606 (2004)zbMATHGoogle Scholar
  32. 32.
    Yu, L.C., Liu, L.W.: Optimal size of stochastic hodgkin-huxley neuronal systems for maximal energy efficiency in coding pulse signal. Phys. Rev. E 89, 032725 (2014)Google Scholar
  33. 33.
    Lu, L., Jia, Y., Xu, Y., Ge, M., Yang, L., Zhan, X.: Energy dependence on modes of electric activities of neuron driven by different external mixed signals under electromagnetic induction. Sci. China Technol. Sci. 62(3), 427–440 (2019)Google Scholar
  34. 34.
    Moujahid, A., d’Anjou, A., Torrealdea, F., Torrealdea, F.: Efficient synchronization of structurally adaptive coupled hindmarsh–rose neurons. Chaos Solitons Fractals 44, 929–933 (2011)Google Scholar
  35. 35.
    Ma, J., Wu, F., Jin, W., Zhou, P., Hayat, T.: Calculation of hamilton energy and control of dynamical systems with different types of attractors. Chaos 27, 053108 (2017)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Ma, J., Zhou, P., Ahmad, B., Ren, G., Wang, C.: Chaos and multi-scroll attractors in rcl-shunted junction coupled jerk circuit connected by memristor. PLoS ONE 13(1), e0191120 (2018)Google Scholar
  37. 37.
    Usha, K., Subha, P.A.: Energy feedback and synchronous dynamics of hindmarsh–rose neuron model with memristor. Chin. Phys. B 28(2), 020502 (2019)Google Scholar
  38. 38.
    Xin-lei, A., Li, Z.: Dynamics analysis and hamilton energy control of a generalized lorenz system with hidden attractor. Nonlinear Dyn. 94(4), 2995–3010 (2018)Google Scholar
  39. 39.
    Li, F., Yao, C.: The infinite-scroll attractor and energy transition in chaotic circuit. Nonlinear Dyn. 84(4), 2305–2315 (2016)MathSciNetGoogle Scholar
  40. 40.
    Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B 221, 87–102 (1984)Google Scholar
  41. 41.
    Rose, R.M., Hindmarsh, J.L.: A model of a thalamic neuron. Proc. R. Soc. Lond. B 225, 161–193 (1985)Google Scholar
  42. 42.
    Storace, M., Linaro, D., de Lange, E.: The hindmarsh–rose neuron model: bifurcation analysis and piecewise-linear approximations. Chaos 18, 033128 (2008)MathSciNetGoogle Scholar
  43. 43.
    Usha, K., Subha, P.A.: Star-coupled hindmarsh–rose neural network with chemical synapses. Int. J. Mod. Phys. C 29, 1850023 (2018)Google Scholar
  44. 44.
    Thottil, S.K., Ignatius, R.P.: Nonlinear feedback coupling in hindmarsh–rose neurons. Nonlinear Dyn. 87(3), 1879–1899 (2017)Google Scholar
  45. 45.
    Belykh, V.N., Belykh, I.V., Mosekilde, E.: Cluster synchronization modes in an ensemble of coupled chaotic oscillators. Phys. Rev. E 63, 036216 (2001)Google Scholar
  46. 46.
    Somers, D., Kopell, N.: Rapid synchronization through fast threshold modulation. Biol. Cybern. 68(5), 393–407 (1993)Google Scholar
  47. 47.
    Usha, K., Subha, P.A.: Hindmarsh–rose neuron model with memristors. BioSystems 178, 1–9 (2019)Google Scholar
  48. 48.
    Monteiro, L.H.A., Filho, A.P., Chaui-Berlinck, J.G., Piqueira, J.R.C.: Oscillation death in a two neuron network with delay in a self connection. J. Biol. Syst. 15(1), 49–61 (2007)zbMATHGoogle Scholar
  49. 49.
    Torrealdea, F.J., d’Anjou, A., Grana, M., Sarasola, C.: Energy aspects of the synchronization of model neurons. Phys. Rev. E 74, 011905 (2006)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CalicutCalicutIndia
  2. 2.Department of Physics, Farook CollegeUniversity of CalicutCalicutIndia

Personalised recommendations