Advertisement

Environmental stochastic effects on phytoplankton–zooplankton dynamics

  • B. I. Camara
  • R. YamapiEmail author
  • H Mokrani
Original Paper
  • 51 Downloads

Abstract

In this study, we consider the environmental stochastic effects on the phytoplankton–zooplankton dynamics. The model used in our investigation is the model on interactions between algae and Daphnia with the environmental stochastic constraint. The role of environmental random constraint of the oscillations dynamics on the phytoplankton–zooplankton interactions has been studied. We estimate mathematically and numerically the threshold value of the intensity for noise generating a transition from the coexistence to the extinction. Our study has shown that environmental stochastic noise can destroy the limit cycle attractor shown in previous work on the deterministic model, and thus drive the system toward extinction of populations. We consider only the situation where the quantity of copper concentration is sufficient for the survival of the populations of the ecosystem. Depending on the copper concentration and on which populations the environmental constraints are applied, the present study reveals that stochastic environmental constraints have positive and negative effects on the life of Daphnia and algae populations. The stochastic environmental constraint provides other necessary nutrients, and we observe the extinction of the populations with the increases in the noise intensity. Both populations extinct when \(\sigma _1\ge 20\). One finds that when the noise is applied to the Scenedesmus populations, the Daphnia populations extinct for \(\sigma _1\ge 10\), while only the Scenedesmus populations survive with the increase in time. When the environmental constraint noise is applied to both populations, the Daphnia populations survive until \(\sigma _1=\sigma _2\ge 20\), while after this, one observes the extinction of both populations.

Keywords

Stochastic perturbation Daphnia Scenedesmus Daphnia–algae interaction 

Notes

Acknowledgements

We are greatly thankful for the financial supports of this work provided by Université de Lorraine.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Daskalov, G.M., Grishin, A.N., Rodionov, S., Mihneva, V.: Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts. Proc. Natl. Acad. Sci. 104(25), 10518–10523 (2007)CrossRefGoogle Scholar
  2. 2.
    Scheffer, M., Carpenter, S.R.: Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18(12), 648–656 (2003)CrossRefGoogle Scholar
  3. 3.
    Freund, J.A., Mieruch, S., Scholze, B., Wiltshire, K., Feudel, U.: Bloom dynamics in a seasonally forced phytoplankton zooplankton model: trigger mechanisms and timing effects. Ecol. Complex. 3, 129 (2006)CrossRefGoogle Scholar
  4. 4.
    Valenti, D., Denaro, G., Spagnolo, B., Mazzola, S., Basilone, G., Conversano, F., Brunet, C., Bonanno, A.: Stochastic models for phytoplankton dynamics in Mediterranean sea. Ecol. Complex. 27, 84 (2016)CrossRefGoogle Scholar
  5. 5.
    Di Lorenzo, E., Fiechter, J., Schneider, N., Bracco, A., Miller, A. J., Franks, P. J. S., ... & Peña, A.: Nutrient and salinity decadal variations in the central and eastern North Pacific. Geophys. Res. Lett. 36, L14601 (2009).  https://doi.org/10.1029/2009GL038261
  6. 6.
    Möllmann, C., Müller-Karulis, B., Kornilovs, G., St John, M.A.: Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: regime shifts, trophic cascade, and feedback loops in a simple ecosystem. ICES J. Mar. Sci. 65(3), 302–310 (2008)CrossRefGoogle Scholar
  7. 7.
    Sieber, M., Malchow, H., Schimansky-Geier, L.: Constructive effects of environmental noise in an excitable prey–predator plankton system with infected prey. Ecol. Complex. 4(4), 223–233 (2007)CrossRefGoogle Scholar
  8. 8.
    Zhang, Z., Rehim, M.: Global qualitative analysis of a phytoplankton–zooplankton model in the presence of toxicity. Int. J. Dyn. Control 5(3), 799–810 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mayer, A.L., Rietkerk, M.: The dynamic regime concept for ecosystem management and restoration. AIBS Bull. 54(11), 1013–1020 (2004)Google Scholar
  10. 10.
    Sarfar, R.P., Malchow, H.: Nutrients and toxin producing phytoplankton control algal blooms a spatio-temporal study in a noisy environment. J. Biosci. 30(5), 749 (2005)CrossRefGoogle Scholar
  11. 11.
    Prosnier, L., Loreau, M., Hulot, F.D.: Modeling the direct and indirect effects of copper on phytoplankton–zooplankton interactions. Aquat. Toxicol. 162, 73 (2015)CrossRefGoogle Scholar
  12. 12.
    Edwards, A.M.: Adding detritus to a nutrient-phytoplankton–zooplankton model: a dynamical-systems approach. J. Plankton Res. 23(4), 389 (2001)CrossRefGoogle Scholar
  13. 13.
    Camara, B.I.: Food web complexity analysis: effects of ecosystem changes. Nonlinear Dyn. 73, 1783–1794 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Petrovskii, S., Sekerci, Y., Venturino, E.: Regime shifts and ecological catastrophes in a model of plankton-oxygen dynamics under the climate change. J. Theor. Biol. 424, 91–109 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Caswell, H., Neubert, M.G.: Chaos and closure terms in plankton food chain models. J. Plankton Res. 20(9), 1837–1845 (1998)CrossRefGoogle Scholar
  16. 16.
    Montagnes, D.J., Fenton, A.: Prey-abundance affects zooplankton assimilation efficiency and the outcome of biogeochemical models. Ecol. Model. 243, 1–7 (2012)CrossRefGoogle Scholar
  17. 17.
    Hilker, F.M., Malchow, H.: Strange periodic attractors in a prey–predator system with infected prey. Math. Popul. Stud. 13(3), 119–134 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Vasseur, D.A., McCann, K.S.: A mechanistic approach for modeling temperature-dependent consumer-resource dynamics. Am. Nat. 166(2), 184–198 (2005)CrossRefGoogle Scholar
  19. 19.
    Dercole, F., Gragnani, A., Kuznetsov, Y.A., Rinaldi, S.: Numerical sliding bifurcation analysis: an application to a relay control system. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 50(8), 1058–1063 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Feo, O.D., Rinaldi, S.: Yield and dynamics of tritrophic food chains. Am. Nat. 150(3), 328–345 (1997)CrossRefGoogle Scholar
  21. 21.
    Cheng, K.: Uniqueness of a limit cycle for a predator–prey system. SIAM J. Math. Anal. 12, 541–548 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Chichigina, O.A., Dubkov, A.A., Valenti, D., Spagnolo, B.: Stability in a system subject to noise with regulated periodicity. Phys. Rev. E 84(021134), 1–10 (2011)Google Scholar
  23. 23.
    Siegenthaler, U., Sarmiento, J.L.: Atmospheric carbon dioxide and the ocean. Nature 365(6442), 119 (1993)CrossRefGoogle Scholar
  24. 24.
    Yentsch, C.S., Lapointe, B.E., Poulton, N., Phinney, D.A.: Anatomy of a red tide bloom off the southwest coast of Florida. Harmful Algae 7(6), 817–826 (2008)CrossRefGoogle Scholar
  25. 25.
    Denaro, G., Valenti, D., Spagnolo, B., Bonanno, A., Basilone, G., Mazzola, S., Zgozi, S., Aronica, S.: Stochastic dynamics of two picophytoplankton populations in a real marine ecosystem. Acta Phys. Pol. B 44, 977–990 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Valenti, D., Denaro, G., La Cognata, A., Spagnolo, B., Bonanno, A., Mazzola, S., Zgozi, S., Aronica, S.: Picophytoplankton dynamics in noisy marine environment. Acta Phys. Pol. B 43, 1227–1240 (2012)CrossRefzbMATHGoogle Scholar
  27. 27.
    Spagnolo, B., Valenti, D., Fiasconaro, A.: Noise in ecosystems: a short review. Math. Biosci. Eng. 1, 185–211 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Liu, Q.X., Jin, Z., Li, B.L.: Resonance and frequency-locking phenomena in spatially extended phytoplankton–zooplankton system with additive noise and periodic forces. J. Stat. Mech. Theory E. 5, P05011 (2008)Google Scholar
  29. 29.
    Ishikawa, M.: Stochastic bifurcations in the plankton-fish system. Trans. Inst. Syst., Control Inf. Eng. 28(12), 453 (2015)Google Scholar
  30. 30.
    El Saadi, N., Arino, O.: A stochastic modelling of phytoplankton aggregation. ARIMA 5, 80 (2006)Google Scholar
  31. 31.
    Karoubya, O., Iliadis, A., Durbecb, J.P., Riandey, V., Carlotti, F.: Stochastic modelling for determining zooplankton abundance. Ecol. Model. 204, 372 (2007)CrossRefGoogle Scholar
  32. 32.
    Denaroay, G., Valentiaz, D., Spagnoloax, B., Bonanno, A., Basilone, G., Mazzola, S., Zgozi, S.W., Aronica, S.: Stochastic dynamics of two picophytoplankton populations in a real marine ecosystem. Acta Phys. Pol. B 44(5), 977 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Ji, Chunyan, Jiang, Daqing, Li, Xiaoyue: Qualitative analysis of a stochastic ratio-dependent predator-prey system. J. Comput. Appl. Math. 235, 1326 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Tian, B., Yang, L., Zhong, S.: Global stability of a stochastic predatorprey model with Allee effect. Int. J. Biomath. 8(4), 1550044 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Camara, B.I., Yamapi, R., Mokrani, H.: How copper contamination pulses shape the regime shifts of phytoplankton–zooplankton dynamics? Commun. Nonlinear Sci. Numer. Simul. 48, 170 (2017)CrossRefGoogle Scholar
  36. 36.
    Rosenzweig, L., MacArthur, R.H.: Graphical representation and stability conditions of predator–prey interactions. Am. Nat. XCVII, 209 (1963)CrossRefGoogle Scholar
  37. 37.
    McCauley, E., Murdoch, W.W., Watson, S.: Simple models and variation inplankton densities among lakes. Am. Nat. 132, 383 (1988)CrossRefGoogle Scholar
  38. 38.
    Murdoch, W.W., Nisbet, R.M., McCauley, E., De Roos, A.M., Gurney, W.S.C.: Plankton abundance and dynamics across nutrient levels: test of hypotheses. Ecology 79(4), 1339 (1998)CrossRefGoogle Scholar
  39. 39.
    Nisbet, R.M., McCauley, E., De Roos, A.M., Murdoch, W.W., Gurney, W.S.C.: Population-dynamics and element recycling in an aquatic plant herbivore system. Theor. Popul. Biol. 40, 125 (1991)CrossRefzbMATHGoogle Scholar
  40. 40.
    Mannella, R.: Integration of stochastic differential equations on a computer. Int. J. Mod. Phys. C 13, 1177 (2002)CrossRefzbMATHGoogle Scholar
  41. 41.
    Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Milstein, G.N.: Approximate integration of stochastic differential equations. Theor. Probab. Appl. 19, 583–588 (1974)MathSciNetGoogle Scholar
  43. 43.
    Milstein, G.N., Tretyakov, M.V.: Numerical integration of stochastic differential equations with nonglobally Lipschitz coefficients. SIAM J. Numer. Anal. 43(3), 1139–1154 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Milstein, G.N.: Numerical Integration of Stochastic Differential Equations, vol. 313. Springer, Berlin (1995)CrossRefGoogle Scholar
  45. 45.
    Omar, M.A., Aboul-Hassan, A., Rabia, S.I.: The composite Milstein methods for the numerical solution of Ito stochastic differential equations. J. Comput. Appl. Math. 235(8), 2277–2299 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Tanaka, H., Yamada, T.: Strong convergence for EulerMaruyama and Milstein schemes with asymptotic method. Int. J. Theor. Appl. Financ. 17(02), 1450014 (2014)CrossRefzbMATHGoogle Scholar
  47. 47.
    Kloeden, P.E., Shardlow, T.: The Milstein scheme for stochastic delay differential equations without using anticipative calculus. Stoch. Anal. Appl. 30(2), 181–202 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Kamrani, M., Jamshidi, N.: Implicit Milstein method for stochastic differential equations via the Wong–Zakai approximation. Numer. Algorithms 79(2), 357–374 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Liu, M., Wang, K., Wu, Q.: Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle. Bull. Math. Biol. 73(9), 1969–2012 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Mandal, P.S., Banerjee, M.: Stochastic persistence and stability analysis of a modified Holling–Tanner model. Math. Methods Appl. Sci. 36(10), 1263–1280 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Fiasconaro, A., Valenti, D., Spagnolo, B.: Asymptotic regime in \(N\) random interacting species. Eur. Phys. J. B 50, 189–194 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratoire Interdisciplinaire des Environnements ContinentauxUniversité de Lorraine - CNRS UMR 7360MetzFrance
  2. 2.Fundamental Physics Laboratory, Department of Physics, Faculty of ScienceUniversity of DoualaDoualaCameroon
  3. 3.Laboratoire de Mathématiques Raphaël SalemUniversité de RouenRouenFrance

Personalised recommendations