Advertisement

Nonlinear Dynamics

, Volume 96, Issue 3, pp 1895–1908 | Cite as

Coherence resonance of the spiking regularity in a neuron under electromagnetic radiation

  • Juan WuEmail author
  • Shaojuan Ma
Original Paper
  • 55 Downloads

Abstract

The electrical activities are investigated in an improved Hindmarsh–Rose (HR) model with the external electromagnetic radiation of Gaussian noise. The mode transitions of the electrical activities induced by Gaussian noise are presented, such as from the rest states to the spiking states and from the spiking states to the spiking states with more or less spikes. Then, the stationary probability distribution functions of the membrane potential of the neuronal spiking are studied to explore the effect of Gaussian noise on the strength of the spiking of the neuron for the different modes of the electrical activities. In addition, the coherence of the spiking regularity of the electrical activities is investigated. The two-dimensional and three-dimensional inverse of the normalized coefficient of the variation of the spiking regularity in the improved HR with external electromagnetic radiation as Gaussian noise and external forcing current are analyzed. Then, the coherence resonance phenomenon induced by the Gaussian noise and external forcing current is discussed under three different modes of the electrical activities. The excitable effect of Gaussian noise and external forcing current on the spiking regularity of the electrical activities is explored. It is found that Gaussian noise can induce the mode transitions of the different electrical activities of the HR neuron and improve the strength of the spiking of the neuron. Gaussian noise and external forcing current can both optimally promote the spiking regularity of the different electrical activities of the neuron.

Keywords

Electrical activity Coherence resonance Random noise Electromagnetic radiation 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11602003, 11572231 and 11771018.

Compliance with ethical standards

Conflict of interest

We declare that we have no conflict of interest in the manuscript.

References

  1. 1.
    Douglass, J.K., Wilkens, L., Pantazelou, E., Moss, F.: Noise enhancement of information-transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365(6444), 337–340 (1993)Google Scholar
  2. 2.
    Volkov, E.I., Ullner, E., Zaikin, A.A., Kurths, J.: Oscillatory amplification of stochastic resonance in excitable systems. Phys. Rev. E 68(2), 026214 (2003)Google Scholar
  3. 3.
    Tang, J., Luo, J.M., Ma, J.: Information transmission in a neuron-astrocyte coupled model. PLoS ONE 8(11), e80324 (2013)Google Scholar
  4. 4.
    Wang, Z.Q., Xu, Y., Yang, H.: Lévy noise induced stochastic resonance in an FHN model. Sci. China Technol. Sci. 59(3), 371–375 (2016)Google Scholar
  5. 5.
    Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)Google Scholar
  6. 6.
    Yilmaz, E., Ozer, M., Baysal, V., Perc, M.: Autapse-induced multiple coherence resonance in single neurons and neuronal networks. Sci. Rep. 6, 30914 (2016)Google Scholar
  7. 7.
    Xu, Y., Feng, J., Li, J.J., Zhang, H.Q.: Lévy noise induced switch in the gene transcriptional regulatory system. Chaos 23(1), 013110 (2013)MathSciNetGoogle Scholar
  8. 8.
    Collins, J.J., Chow, C.C., Imhoff, T.T.: Aperiodic stochastic resonance in excitable systems. Phys. Rev. E 52(4), R3321–R3324 (1995)Google Scholar
  9. 9.
    Wu, J., Xu, Y., Ma, J.: Lévy noise improves the electrical activity in a neuron under electromagnetic radiation. PLoS ONE 12(3), e0174330 (2017)Google Scholar
  10. 10.
    Xu, Y., Li, Y.G., Zhang, H., Li, X.F., Kurths, J.: The switch in a genetic toggle system with Lévy noise. Sci. Rep. 6, 31505 (2016)Google Scholar
  11. 11.
    Li, Y.G., Xu, Y., Kurths, J., Yue, X.L.: Lévy-noise-induced transport in a rough triple-well potential. Phys. Rev. E 94(4), 042222 (2016)Google Scholar
  12. 12.
    Mantegna, R.N., Spagnolo, B.: Stochastic resonance in a tunnel diode. Phys. Rev. E 49(3), R1792–R1795 (1994)Google Scholar
  13. 13.
    Fauve, S., Heslot, F.: Stochastic resonance in a bistable system. Phys. Lett. A 97(1–2), 5–7 (1983)Google Scholar
  14. 14.
    Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. A Math. Gene. 14(11), L453–L457 (1981)MathSciNetGoogle Scholar
  15. 15.
    Xu, Y., Wu, J., Du, L., Yang, H.: Stochastic resonance in a genetic toggle model with harmonic excitation and Lévy noise. Chaos Solitons Fractals 92, 91–100 (2016)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Wu, J., Xu, Y., Wang, H.Y., Kurths, J.: Information-based measures for logical stochastic resonance in a synthetic gene network under Lévy flight superdiffusion. Chaos 27(6), 339–342 (2017)Google Scholar
  17. 17.
    Pikovsky, A.S., Kurths, J.: Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78(5), 775–778 (1997)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Kim, J.H., Lee, H.J., Min, C.H., Lee, K.J.: Coherence resonance in bursting neural networks. Phys. Rev. E 92(4), 042701 (2015)Google Scholar
  19. 19.
    Perc, M.: Spatial coherence resonance in excitable media. Phys. Rev. E 72, 016207 (2005)MathSciNetGoogle Scholar
  20. 20.
    Perc, M., Marhl, M.: Minimal model for spatial coherence resonance. Phys. Rev. E 73, 066205 (2006)Google Scholar
  21. 21.
    Perc, M.: Spatial coherence resonance in neuronal media with discrete local dynamics. Chaos Solitons Fractals 31, 64–69 (2007)Google Scholar
  22. 22.
    Gosak, M., Perc, M.: Proximity to periodic windows in bifurcation diagrams as a gateway to coherence resonance in chaotic systems. Phys. Rev. E 76, 037201 (2007)Google Scholar
  23. 23.
    Wang, Q., Perc, M., Duan, Z., Chen, G.: Delay-enhanced coherence of spiral waves in noisy Hodgkin–Huxley neuronal networks. Phys. Lett. A 372(35), 5681–5687 (2008)zbMATHGoogle Scholar
  24. 24.
    Wang, Q.Y., Perc, M., Duan, Z.S., Chen, G.R.: Spatial coherence resonance in delayed Hodgkin–Huxley neuronal networks. Int. J. Mod. Phys. B 24(09), 1201–1213 (2010)zbMATHGoogle Scholar
  25. 25.
    Wang, Q.Y., Zhang, H.H., Perc, M., Chen, G.R.: Multiple firing coherence resonances in excitatory and inhibitory coupled neurons. Commun. Nonlinear Sci. Numer. Simul. 17(10), 3979–3988 (2012)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Ozer, M., Perc, M., Uzuntarla, M.: Controlling the spontaneous spiking regularity via channel blocking on Newman–Watts networks of Hodgkin–Huxley neurons. Epl 86(4), 40008 (2009)Google Scholar
  27. 27.
    Lindner, B., Schimansky-Geier, L.: Analytical approach to the stochastic FitzHugh–Nagumo system and coherence resonance. Phys. Rev. E 60(60), 7270–7276 (1999)Google Scholar
  28. 28.
    Sun, X.J., Perc, M., Lu, Q.S., Kurths, J.: Spatial coherence resonance on diffusive and small-world networks of Hodgkin–Huxley neurons. Chaos 18(2), 023102 (2008)MathSciNetGoogle Scholar
  29. 29.
    Majhi, S., Bera, B., Ghosh, D., Perc, M.: Chimera states in neuronal networks: a review. Phys. Life Rev. 09(003), 1–22 (2018)Google Scholar
  30. 30.
    Gosak, M., Markovič, R., Dolenšeka, J., Rupnik, M.S., Marhl, M., Stožera, A., Perc, M.: Network science of biological systems at different scales: a review. Phys. Life Rev. 24, 118–135 (2017)Google Scholar
  31. 31.
    Perc, M.: Effects of small-world connectivity on noise-induced temporal and spatial order in neural media. Chaos Solitons Fractals 31(2), 280–291 (2007)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Lv, M., Wang, C.N., Ren, G.D., Ma, J., Song, X.L.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85(3), 1479–1490 (2016)Google Scholar
  33. 33.
    Rostami, Z., Jafari, S., Perc, M., Slavinec, M.: Elimination of spiral waves in excitable media by magnetic induction. Nonlinear Dyn. 94, 679–692 (2018)Google Scholar
  34. 34.
    Ma, J., Wu, F., Wang, C.: Synchronization behaviors of coupled neurons under electromagnetic radiation. Int. J. Mod. Phys. B 30, 1650251 (2017)MathSciNetGoogle Scholar
  35. 35.
    Yi, G.S., Wang, J., Tsang, K.M., Wei, X.L., Deng, B., Han, C.X.: Spike-frequency adaptation of a two-compartment neuron modulated by extracellular electric fields. Biol. Cybern. 109(3), 287–306 (2015)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. 221(1222), 87–102 (1984)Google Scholar
  37. 37.
    Song, X.L., Wang, C.N., Ma, J., Tang, J.: Transition of electric activity of neurons induced by chemical and electric autapses. Sci. China Technol. Sci. 58(6), 1007–1014 (2015)Google Scholar
  38. 38.
    Ma, J., Tang, J., Zhang, A.H., Jia, Y.: Robustness and breakup of the spiral wave in a two-dimensional lattice network of neurons. Sci. China Phys. Mech. Astron. 53(4), 672–679 (2010)Google Scholar
  39. 39.
    Wang, H.T., Chen, Y.: Spatiotemporal activities of neural network exposed to external electric fields. Nonlinear Dyn. 85(2), 881–891 (2016)MathSciNetGoogle Scholar
  40. 40.
    Wang, H.T., Wang, L.F., Chen, Y.L., Chen, Y.: Effect of autaptic activity on the response of a Hodgkin–Huxley neuron. Chaos 24(3), 5880–5885 (2014)MathSciNetGoogle Scholar
  41. 41.
    Zhan, F.B., Liu, S.Q.: Response of electrical activity in an improved neuron model under electromagnetic radiation and noise. Front. Comput. Neurosci. 11, 107 (2017)Google Scholar
  42. 42.
    Wu, F.Q., Wang, C.N., Jin, W.Y., Ma, J.: Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Physica A 469, 81–88 (2017)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Tang, K., Wang, Z., Shi, X.: Electrical activity in a time-delay four-variable neuron model under electromagnetic induction. Front. Comput. Neurosci. 11, 105 (2017)Google Scholar
  44. 44.
    Ge, M.Y., Jia, Y., Xu, Y., Yang, L.J.: Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn. 11071, 1–9 (2017)Google Scholar
  45. 45.
    Ma, J., Wang, Y., Wang, C.N., Xu, Y., Ren, G.D.: Mode selection in electrical activities of myocardial cell exposed to electromagnetic radiation. Chaos Solitons Fractals 99, 219–225 (2017)Google Scholar
  46. 46.
    Wang, Y., Ma, J., Xu, Y., Wu, F.Q., Zhou, P.: The electrical activity of neurons subject to electromagnetic induction and Gaussian white noise. Int. J. Bifurcat. Chaos 27(02), 1750030 (2017)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Lundqvist, M., Compte, A., Lansner, A.: Bistable, irregular firing and population oscillations in a modular attractor memory network. PLoS Comput. Biol. 6(6), e1000803 (2010)MathSciNetGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.China (Xi’an) Institute for Silk Road ResearchXi’an University of Finance and EconomicsXi’anChina
  2. 2.School of Mathematics & Information ScienceNorth Minzu UniversityYinchuanChina

Personalised recommendations