A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams

  • Jiaxi ZhouEmail author
  • Lingling Dou
  • Kai Wang
  • Daolin Xu
  • Huajiang Ouyang
Original Paper


Although elastic metamaterials in a subwavelength scale can control macroscopic waves, it is still a big challenge to attenuate elastic waves at very low frequency (a few tens Hz). The main contribution of this paper is to develop a high-static-low-dynamic-stiffness (HSLDS) resonator with an inertial amplification mechanism (IAM), which is able to create a much lower band gap than a pure HSLDS resonator. The nonlinear characteristics of a locally resonant (LR) beam attached with such new resonators are also explored. The band gap of this LR-IAM beam is revealed by employing transfer matrix method and validated by numerical simulations using Galerkin discretization. It is shown that a very low-frequency band gap can be formed by tuning the net stiffness of the resonator towards an ultra-low value. In addition, the nonlinearity, arising from the restoring force of the resonator, the damping force and effective inertia of the IAM, gives rise to an intriguing feature of amplitude-dependent wave attenuation, which could potentially act as a switch or filter to manipulate flexural waves.


Wave attenuation Low frequency Local resonance Inertial amplification Nonlinearity 



This research work was supported by National Key R&D Program of China (2017YFB1102801), National Natural Science Foundation of China (11572116), and Natural Science Foundation of Hunan Province (2016JJ3036).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Lou, J., Zhu, S., He, L., Yu, X.: Application of chaos method to line spectra reduction. J. Sound Vib. 286(3), 645–652 (2005)CrossRefGoogle Scholar
  2. 2.
    Rivin, E.I.: Passive Vibration Isolation. American Society of Mechanical Engineers Press, New York (2003)CrossRefGoogle Scholar
  3. 3.
    Wang, X., Zhou, J.X., Xu, D.L., Ouyang, H.J., Duan, Y.: Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness. Nonlinear Dyn. 87(1), 633–646 (2017)CrossRefGoogle Scholar
  4. 4.
    Zhou, J., Wang, X.L., Xu, D.L., Bishop, S.: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms. J Sound Vib. 346, 53–69 (2015)CrossRefGoogle Scholar
  5. 5.
    Wen, J., Wang, G., Yu, D., Zhao, H., Liu, Y.: Theoretical and experimental investigation of flexural wave propagation in straight beams with periodic structures: application to a vibration isolation structure. J. Appl. Phys. 97(11), 114907 (2005)CrossRefGoogle Scholar
  6. 6.
    Fok, L., Ambati, M., Zhang, X.: Acoustic metamaterials. MRS Bull. 33(10), 931–934 (2008)CrossRefGoogle Scholar
  7. 7.
    Ma, G., Sheng, P.: Acoustic metamaterials: from local resonances to broad horizons. Sci. Adv. 2(2), e1501595 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hussein, M.I., Leamy, M.J., Ruzzene, M.: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66(4), 040802 (2014)CrossRefGoogle Scholar
  9. 9.
    Zhou, X., Liu, X., Hu, G.: Elastic metamaterials with local resonances: an overview. Theor. Appl. Mech. Lett. 2(4), 041001 (2012)CrossRefGoogle Scholar
  10. 10.
    Liu, Z.Y., Zhang, X.X., Mao, Y.W., Zhu, Y.Y., Yang, Z.Y., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289(5485), 1734–1736 (2000)CrossRefGoogle Scholar
  11. 11.
    Yu, D.L., Liu, Y., Wang, G., Zhao, H., Qiu, J.: Flexural vibration band gaps in Timoshenko beams with locally resonant structures. J. Appl. Phys. 100(12), 124901 (2006)CrossRefGoogle Scholar
  12. 12.
    Yu, D., Wen, J., Shen, H., Xiao, Y., Wen, X.: Propagation of flexural wave in periodic beam on elastic foundations. Phys. Lett. A 376(4), 626–630 (2012)CrossRefGoogle Scholar
  13. 13.
    Xiao, Y., Wen, J.H., Yu, D.L., Wen, X.S.: Flexural wave propagation in beams with periodically attached vibration absorbers: band-gap behavior and band formation mechanisms. J. Sound Vib. 332(4), 867–893 (2013)CrossRefGoogle Scholar
  14. 14.
    Liu, L., Hussein, M.I.: Wave motion in periodic flexural beams and characterization of the transition between Bragg scattering and local resonance. J. Appl. Mech. 79(1), 011003–17 (2011)CrossRefGoogle Scholar
  15. 15.
    Zhu, R., Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: A chiral elastic metamaterial beam for broadband vibration suppression. J. Sound Vib. 333(10), 2759–2773 (2014)CrossRefGoogle Scholar
  16. 16.
    Wang, X., Wang, M.Y.: An analysis of flexural wave band gaps of locally resonant beams with continuum beam resonators. Meccanica 51(1), 171–178 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Xiao, Y., Wen, J.H., Wen, X.S.: Broadband locally resonant beams containing multiple periodic arrays of attached resonators. Phys. Lett. A 376(16), 1384–1390 (2012)CrossRefGoogle Scholar
  18. 18.
    Krödel, S., Thomé, N., Daraio, C.: Wide band-gap seismic metastructures. Extreme Mech. Lett. 4, 111–117 (2015)CrossRefGoogle Scholar
  19. 19.
    Chen, Y., Hu, G.K., Huang, G.L.: A hybrid elastic metamaterial with negative mass density and tunable bending stiffness. J. Mech. Phys. Solids 105, 179–198 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Yilmaz, C., Hulbert, G.M., Kikuchi, N.: Phononic band gaps induced by inertial amplification in periodic media. Phys. Rev. B 76, 054309 (2007)CrossRefGoogle Scholar
  21. 21.
    Yilmaz, C., Hulbert, G.M.: Theory of phononic gaps induced by inertial amplification in finite structures. Phys. Lett. A 374(34), 3576–3584 (2010)CrossRefGoogle Scholar
  22. 22.
    Acar, G., Yilmaz, C.: Experimental and numerical evidence for the existence of wide and deep phononic gaps induced by inertial amplification in two-dimensional solid structures. J. Sound Vib. 332(24), 6389–6404 (2013)CrossRefGoogle Scholar
  23. 23.
    Yuksel, O., Yilmaz, C.: Shape optimization of phononic band gap structures incorporating inertial amplification mechanisms. J. Sound Vib. 355, 232–245 (2015)CrossRefGoogle Scholar
  24. 24.
    Taniker, S., Yilmaz, C.: Generating ultra wide vibration stop bands by a novel inertial amplification mechanism topology with flexure hinges. Int. J. Solids Struct. 106, 129–138 (2017)CrossRefGoogle Scholar
  25. 25.
    Frandsen, N.M.M., Bilal, O.R., Jensen, J.S., Hussein, M.I.: Inertial amplification of continuous structures: large band gaps from small masses. J. Appl. Phys. 119(12), 124902 (2016)CrossRefGoogle Scholar
  26. 26.
    Barys, M., Jensen, J.S., Frandsen, N.M.M.: Efficient attenuation of beam vibrations by inertial amplification. Eur. J. Mech. A Solid 71, 245–257 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Li, J., Li, S.: Generating ultra wide low-frequency gap for transverse wave isolation via inertial amplification effects. Phys. Lett. A 382(5), 241–247 (2018)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Hou, M., Wu, J., Cao, S., Guan, D., Zhu, Y.: Extremely low frequency band gaps of beam-like inertial amplification metamaterials. Mod. Phys. Lett. B 31(27), 1750251 (2017)CrossRefGoogle Scholar
  29. 29.
    Zhou, J.X., Wang, K., Xu, D.L., Ouyang, H.J.: Local resonator with high-static-low-dynamic stiffness for lowering band gaps of flexural wave in beams. J. Appl. Phys. 121(4), 044902 (2017)CrossRefGoogle Scholar
  30. 30.
    Zhou, J.X., Wang, K., Xu, D.L., Ouyang, H.J.: Multi-low-frequency flexural wave attenuation in Euler–Bernoulli beams using local resonators containing negative-stiffness mechanisms. Phys. Lett. A 381(37), 3141–3148 (2017)CrossRefGoogle Scholar
  31. 31.
    Vakakis, A.F., King, M.E., Pearlstein, A.J.: Forced localization in a periodic chain of non-linear oscillators. Int. J. Nonlinear Mech. 29(3), 429–447 (1994)CrossRefzbMATHGoogle Scholar
  32. 32.
    Boechler, N., Theocharis, G., Job, S., Kevrekidis, P.G., Porter, M.A., Daraio, C.: Discrete breathers in one-dimensional diatomic granular crystals. Phys. Rev. Lett. 104(24), 244302 (2009)CrossRefGoogle Scholar
  33. 33.
    Boechler, N., Theocharis, G., Daraio, C.: Bifurcation-based acoustic switching and rectification. Nat. Mater. 10, 665 (2011)CrossRefGoogle Scholar
  34. 34.
    Fang, X., Wen, J.H., Bonello, B., Yin, J., Yu, D.L.: Ultra-low and ultra-broad-band nonlinear acoustic metamaterials. Nat. Commun. 8(1), 1288 (2017)CrossRefGoogle Scholar
  35. 35.
    Chakraborty, G., Mallik, A.K.: Dynamics of a weakly non-linear periodic chain. Int. J. Nonlinear Mech. 36(2), 375–389 (2001)CrossRefzbMATHGoogle Scholar
  36. 36.
    Narisetti, R.K., Leamy, M.J., Ruzzene, M.: A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures. J. Vib. Acoust. 132(3), 031001 (2010)CrossRefGoogle Scholar
  37. 37.
    Manktelow, K., Leamy, M.J., Ruzzene, M.: Multiple scales analysis of wave-wave interactions in a cubically nonlinear monoatomic chain. Nonlinear Dyn. 63(1), 193–203 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Lazarov, B.S., Jensen, J.S.: Low-frequency band gaps in chains with attached non-linear oscillators. Int. J. Nonlinear Mech. 42(10), 1186–1193 (2007)CrossRefGoogle Scholar
  39. 39.
    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995)CrossRefzbMATHGoogle Scholar
  40. 40.
    Moon, F.C.: Chaotic Vibrations: An Introduction for Applied Scientists and Engineers. Wiley, New York (1987)zbMATHGoogle Scholar
  41. 41.
    Dai H.M., Ho K.M., Yang Z., Sheng P.: Non-periodic locally resonant sonic materials. In: The 14th International Congress on Sound and Vibration, Cairns, Australia, 9–12 July (2007)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of Mechanical and Vehicle EngineeringHunan UniversityChangshaPeople’s Republic of China
  2. 2.State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyChangshaPeople’s Republic of China
  3. 3.School of EngineeringUniversity of LiverpoolLiverpoolUK

Personalised recommendations