De-spinning of tethered space target via partially invariable deployment with tension control

  • Hao WenEmail author
  • Dongping Jin
Original Paper


This paper focuses on the dynamics and control problems of deploying a small tethered payload from a massive spinning target in space such that the target can be gradually de-spun via the induced torque by the tether tension. The deployment control task is subject to a special limit that the control action should be made only by regulating the tether tension which needs to be kept at a positive level all the time. The basis of the proposed control law is on the identification of ‘partially invariable’ deployment motions, in which the length rate of the tether and its angle with respect to the target are kept invariable by regulating the tether tension, thereby de-spinning the massive target in a smooth and stable manner. Moreover, a model predictive control law which explicitly accounts for control constraint and nonlinear dynamics is developed to achieve and retain the partially invariable deployment for the tethered system. Successful de-spinning of the tethered target by the proposed control scheme is demonstrated by numerical case studies in which partially invariable motions are achieved in a rapid manner and retained afterward.


Space tether De-spin Partially invariable Tension control Deployment 



This work was supported by the National Natural Science Foundation of China under Grant 11772150.


  1. 1.
    Wen, H., Jin, D.P., Hu, H.Y.: Advances in dynamics and control of tethered satellite systems. Acta Mech. Sin. 24(3), 229–241 (2008)CrossRefzbMATHGoogle Scholar
  2. 2.
    Chen, Y., Huang, R., He, L.P., Ren, X.L., Zheng, B.: Dynamical modelling and control of space tethers: a review of space tether research. Nonlinear Dyn. 77(4), 1077–1099 (2014)CrossRefGoogle Scholar
  3. 3.
    Huang, P., Zhang, F., Chen, L., Meng, Z., Zhang, Y., Liu, Z., Hu, Y.: A review of space tether in new applications. Nonlinear Dyn. 94(1), 1–19 (2018)CrossRefGoogle Scholar
  4. 4.
    Sun, X., Zhong, R.: Libration control for the low-thrust space tug system using electrodynamic force. J. Guid. Control Dyn. 41(7), 1600–1607 (2018)CrossRefGoogle Scholar
  5. 5.
    Li, G., Zhu, Z.H., Cain, J., Newland, F., Czekanski, A.: Libration control of bare electrodynamic tethers considering elastic–thermal–electrical coupling. J. Guid. Control Dyn. 39(3), 642–654 (2016)CrossRefGoogle Scholar
  6. 6.
    Wen, H., Zhu, Z.H., Jin, D.P., Hu, H.Y.: Constrained tension control of a tethered space-tug system with only length measurement. Acta Astronaut. 119, 110–117 (2016)CrossRefGoogle Scholar
  7. 7.
    Shan, M., Guo, J., Gill, E.: Review and comparison of active space debris capturing and removal methods. Prog. Aerosp. Sci. 80, 18–32 (2016)CrossRefGoogle Scholar
  8. 8.
    Lim, J., Chung, J.: Dynamic analysis of a tethered satellite system for space debris capture. Nonlinear Dyn. 94(4), 2391–2408 (2018)CrossRefGoogle Scholar
  9. 9.
    Shan, M., Guo, J., Gill, E.: Deployment dynamics of tethered-net for space debris removal. Acta Astronaut. 132, 293–302 (2017)CrossRefGoogle Scholar
  10. 10.
    Zhang, F., Huang, P.: Releasing dynamics and stability control of maneuverable tethered space net. IEEE/ASME Trans. Mechatron. 22(2), 983–993 (2017)CrossRefGoogle Scholar
  11. 11.
    Liu, Y., Huang, P., Zhang, F., Zhao, Y.: Robust distributed consensus for deployment of tethered space net robot. Aerosp. Sci. Technol. 77, 524–533 (2018)CrossRefGoogle Scholar
  12. 12.
    Yudintsev, V., Aslanov, V.: Detumbling space debris using modified Yo-Yo mechanism. J. Guid. Control Dyn. 40(3), 714–721 (2017)CrossRefGoogle Scholar
  13. 13.
    Meng, Z., Wang, B., Huang, P.: Twist suppression method of tethered towing for spinning space debris. J. Aerosp. Eng. 30(4), 04017012 (2017)CrossRefGoogle Scholar
  14. 14.
    Jaworski, P., Lappas, V., Tsourdos, A., Gray, I., Schaub, H.: Debris rotation analysis during tethered towing for active debris removal. J. Guid. Control Dyn. 40(7), 1769–1778 (2017)CrossRefGoogle Scholar
  15. 15.
    Hovell, K., Ulrich, S.: Postcapture dynamics and experimental validation of subtethered space debris. J. Guid. Control Dyn. 41(2), 516–522 (2018)CrossRefGoogle Scholar
  16. 16.
    O’Connor, W.J., Hayden, D.J.: Detumbling of space debris by a net and elastic tether. J. Guid. Control Dyn. 40(7), 1829–1836 (2017)Google Scholar
  17. 17.
    Huang, P.F., Wang, D.K., Zhang, F., Meng, Z.J., Liu, Z.X.: Postcapture robust nonlinear control for tethered space robot with constraints on actuator and velocity of space tether. Int. J. Robust Nonlinear Control 27(16), 2824–2841 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lu, Y., Huang, P., Meng, Z., Hu, Y., Zhang, F., Zhang, Y.: Finite time attitude takeover control for combination via tethered space robot. Acta Astronaut. 136, 9–21 (2017)CrossRefGoogle Scholar
  19. 19.
    Hoyt, R.P., James, K.: WRANGLER: nanosatellite architecture for tethered de-spin of massive asteroids. In: AIAA SPACE 2015 Conference and Exposition, American Institute of Aeronautics and Astronautics, Pasadena, California, 31 August–2 September (2015)Google Scholar
  20. 20.
    Kang, J., Zhu, Z.H.: De-spin of massive rotating space object by tethered space tug. J. Guid. Control Dyn. 41(11), 2463–2469 (2018)CrossRefGoogle Scholar
  21. 21.
    Wen, H., Zhu, Z.H., Jin, D.P., Hu, H.Y.: Model predictive control with output feedback for a deorbiting electrodynamic tether system. J. Guid. Control Dyn. 39(10), 2451–2456 (2016)CrossRefGoogle Scholar
  22. 22.
    Darby, C.L., Garg, D., Rao, A.V.: Costate estimation using multiple-interval pseudospectral methods. J. Spacecr. Rocket 48(5), 856–866 (2011)CrossRefGoogle Scholar
  23. 23.
    Wächter, A., Biegler, T.L.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations