Chaotic dynamics and optical power saturation in parity–time (PT) symmetric double-ring resonator

  • Jyoti Prasad Deka
  • Amarendra K. SarmaEmail author
Original Paper


In this work, we report emergence of saturation and chaotic spiking of optical power in a double-ring resonator with balanced loss and gain, obeying the so-called parity–time symmetry. We have modeled the system using a discrete-time iterative equation known as the Ikeda map. In the linear regime, evolution of optical power in the system shows power saturation behavior below the PT threshold and exponential blowup above the PT threshold. We found that in the unbroken PT regime, optical power saturation occurs owing to the existence of stable stationary states, which lies on the surface of four-dimensional hypersphere. Inclusion of Kerr nonlinearity into our model leads to the emergence of a stable, chaotic and divergent region in the parameter basin for period-1 cycle. A closer inspection into the system shows us that the largest Lyapunov exponent blows up in the divergent region. It is found that the existence of high nonnegative largest Lyapunov exponent causes chaotic spiking of optical power in the resonators.


Chaos Ikeda Parity–time symmetry Resonators 



J.P.D. would like to thank MHRD, Government of India, for financial support through a fellowship, and A.K.S. would like to acknowledge the financial support from DST-SERB, Government of India (Grant No. SB/FTP/PS-047/2013).


  1. 1.
    Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    El-Ganainy, R., Makris, K.G., Christodoulides, D.N., Musslimani, Z.H.: Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 26322634 (2007)Google Scholar
  3. 3.
    Guo, A., et al.: Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)CrossRefGoogle Scholar
  4. 4.
    Ruter, C.E., et al.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192 (2010)CrossRefGoogle Scholar
  5. 5.
    Lü, Xin-You, Jing, Hui, Ma, Jin-Yong, Ying, Wu: PT-symmetry-breaking chaos in Optomechanics. Phys. Rev. Lett. 114, 253601 (2015)CrossRefGoogle Scholar
  6. 6.
    Gupta, S.K., Sarma, A.K.: Peregrine rogue wave dynamics in the continuous nonlinear Schrodinger system with parity-time symmetric Kerr nonlinearity. Commun. Nonlinear Sci. Num. Simul. 36, 141 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Peng, B., et al.: Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394 (2014)CrossRefGoogle Scholar
  8. 8.
    Duanmu, M., Li, K., Horne, R.L., Kevrekidis, P.G., Whitaker, N.: Linear and nonlinear parity-time-symmetric oligomers: a dynamical systems analysis. Philos. Trans. R. Soc. A 371, 20120171 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Li, K., Kevrekidis, P.G., Frantzeeskakis, D.J., Rüter, C.E., Kip, D.: Revisiting the PT -symmetric trimer: bifurcations, ghost states and associated dynamics. J. Phys. A Math. Gen. 46, 375304 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Deka, J.P., Sarma, A.K.: Perturbative dynamics of stationary states in nonlinear parity-time symmetric coupler. Commun. Nonlinear Sci. Num. Simul. 57, 26 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Konotop, V.V., Yang, J., Zezyulin, D.A.: Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys. 88, 035002 (2016)CrossRefGoogle Scholar
  12. 12.
    Liu, W., et al.: An integrated parity-time symmetric wavelength-tunable single-mode microring laser. Nat. Commun. 8, 15389 (2017)CrossRefGoogle Scholar
  13. 13.
    Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D.N., Khajavikhan, M.: Parity-time-symmetric microring lasers. Science 346, 975 (2014)CrossRefGoogle Scholar
  14. 14.
    Ikeda, K., Daido, H., Akimoto, O.: Optical turbulence: chaotic behavior of transmitted light from a ring cavity. Phys. Rev. Lett. 45, 709 (1980)CrossRefGoogle Scholar
  15. 15.
    Ikeda, K.: Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system. Opt. Commun. 30, 257 (1979)CrossRefGoogle Scholar
  16. 16.
    Steinmeyer, G., Jaspert, D., Mitschke, F.: Observation of a period-doubling sequence in a nonlinear optical fiber ring cavity near zero dispersion. Opt. Commun. 104, 379 (1994)CrossRefGoogle Scholar
  17. 17.
    Haelterman, M.: Period-doubling bifurcations and modulational instability in the nonlinear ring cavity: an analytical study. Opt. Lett. 17, 792 (1992)CrossRefGoogle Scholar
  18. 18.
    Steinmeyer, G., Buchholz, A., Hansel, M., Heuer, M., Schwache, A., Mitschke, F.: Dynamical pulse shaping in a nonlinear resonator. Phys. Rev. A 52, 830 (1995)CrossRefGoogle Scholar
  19. 19.
    Vallée, R.: Temporal instabilities in the output of an all-fiber ring cavity. Opt. Commun. 81, 419 (1991)CrossRefGoogle Scholar
  20. 20.
    Zaitsev, S., Gottlieb, O., Buks, E.: Nonlinear dynamics of a microelectromechanical mirror in an optical resonance cavity. Nonlinear Dyn. 69, 1589 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Akram, M.J., Saif, F.: Complex dynamics of nano-mechanical membrane in cavity optomechanics. Nonlinear Dyn. 83, 963 (2016)CrossRefGoogle Scholar
  22. 22.
    Deka, J.P., Gupta, S.K., Sarma, A.K.: Controllable chaotic dynamics in a nonlinear fiber ring resonators with balanced gain and loss. Nonlinear Dyn. 87, 1121 (2017)CrossRefGoogle Scholar
  23. 23.
    Lynch, S., Steele, A.L., Hoad, J.E.: Stability analysis of nonlinear optical resonators. Chaos Solitons Fractals 9, 935–946 (1998)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations