Advertisement

Integrability and limit cycles in cubic Kukles systems with a nilpotent singular point

  • Feng LiEmail author
  • Shimin Li
Original Paper
  • 8 Downloads

Abstract

In this paper, integrability problem and bifurcation of limit cycles for cubic Kukles systems which are assumed to have a nilpotent origin are investigated. A complete classification is given on the integrability conditions and proven to have a total of 7 cases. Bifurcation of limit cycles is also discussed; six or seven limit cycles can be obtained by two different perturbation methods. Integrability problem and bifurcation of limit cycles for the cubic Kukles systems with a nilpotent origin have been completely solved.

Keywords

Kukles system Center–focus problem Nilpotent singular point Normal form Integrability 

Notes

Acknowledgements

We thank the anonymous reviewer for his/her valuable and detailed comments which have greatly improved our paper. This research was partially supported by the National Natural Science Foundation of China (Nos. 11601212, 2017A030313010,11501055), Natural Science Foundation of Shandong Province (No. ZR2018MA002) and Science and Technology Program of Guangzhou (No. 201707010426).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Christopher, C.J., Lloyd, N.G.: On the paper of Jin and Wang concerning the conditions for a centre in certain cubic systems. Bull. Lond. Math. Soc. 22, 5–12 (1990)CrossRefzbMATHGoogle Scholar
  2. 2.
    Lloyd, N.G., Pearson, J.M.: Conditions for a centre and the bifurcation of limit cycles. In: Francoise, J.P., Roussarie, R. (eds.) Bifurcations of Planar Vector Fields. Lecture Notes Mathematics, vol. 1455, pp. 230–242. Springer, Berlin (1990)CrossRefGoogle Scholar
  3. 3.
    Lloyd, N.G., Pearson, J.M.: Computing centre conditions for certain cubic systems. J. Comput. Appl. Math. 40, 323–336 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Sadovskii, A.P.: Solution of the center and foci problem for a cubic system of nonlinear oscillations. Differ. Uravn. (Russian) 33(2), 236–244 (1997)Google Scholar
  5. 5.
    Gine, J., Llibre, J., Claudia, V.: Centers for the Kukles homogeneous systems with odd degree. Bull. Lond. Math. Soc. 47(2), 315–324 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gine, J., Llibre, J., Valls, C.: Centers for the Kukles homogeneous systems with even degree. J. Appl. Anal. Comput. 7(4), 1534–1548 (2017)MathSciNetGoogle Scholar
  7. 7.
    Pearson, J.M., Lloyd, N.G.: Kukles revisited: advances in computing techniques. Comput. Math. Appl. 60(10), 2797–2805 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hill, J.M., Lloyd, N.G., Pearson, J.M.: Algorithmic derivation of isochronicity conditions. Nonlinear Anal. 67, 52–69 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hill, J.M., Lloyd, N.G., Pearson, J.M.: Centres and limit cycles for an extended Kukles system. Electron. J. Differ. Equ. 119, 1–23 (2007)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Romanovski, V.G., Shafer, D.S.: The Center and Cyclicity Problems: A Computational Algebra Approach. Birkhauser, Boston (2009)zbMATHGoogle Scholar
  11. 11.
    Sadovskii, A.P., Shcheglova, T.V.: Solution of the center–foci problem for a cubic system with nine parameters. Differ. Uravn. (Russian) 47(2), 209–224 (2011); Differ. Equ. 47(2), 208–223 (2011)Google Scholar
  12. 12.
    Kushner, A.A., Sadovskii, A.P.: Center conditions for Lienard-type systems of degree four. Gos. Univ. Ser. 1 Fiz. Mat. Inform. (Russian) 2, 119–122 (2011)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Sadovskii, A.P., Shcheglova, T.V.: Center conditions for a polynomial differential system. Differ. Uravn. 49(2), 151164 (2013); Differ. Equ. 49(2), 151165 (2013)Google Scholar
  14. 14.
    Han, M., Sheng, L., Zhang, X.: Bifurcation theory for finitely smooth planar autonomous differential systems. J. Differ. Equ. 264, 3596–3618 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Han, M., Hou, X., Sheng, L., Wang, C.: Theory of rotated equations and applications to a population model. Discrete Contin. Dyn. Syst. A 38, 2171–2185 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Han, M., Petek, T., Romanovski, V.G.: Reversibility in polynomial systems of ODEs. Appl. Math. Comput. 338, 55–71 (2018)MathSciNetGoogle Scholar
  17. 17.
    Yu, P., Han, M., Li, J.: An improvement on the number of limit cycles bifurcating from a nondegenerate center of homogeneous polynomial systems. Int. J. Bifur. Chaos 28, 1850078 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rebollo-Perdomo, S., Vidal, C.: Bifurcation of limit cycles for a family of perturbed Kukles differential systems. Discrete Contin. Dyn. Syst. A 38(8), 4189–4202 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Alvarez, M.J., Gasull, A.: Generating limits cycles from a nilpotent critical point via normal forms. J. Math. Anal. Appl. 318, 271–287 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Liu, Y., Li, J.: New study on the center problem and bifurcations of limit cycles for the Lyapunov system II. Int. J. Bifur. Chaos 19(09), 3087–3099 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Li, F., Liu, Y., Liu, Y., Yu, P.: Bi-center problem and bifurcation of limit cycles from nilpotent singular points in \(Z_2\)-equivariant cubic vector fields. J. Differ. Equ. 265(10), 4965–4992 (2018)CrossRefzbMATHGoogle Scholar
  22. 22.
    Hill, J.M., Lloyd, N.G., Pearson, J.M.: Limit cycles of a predator? prey model with intratrophic predation. J. Math. Anal. Appl. 349, 544–555 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Pitchford, J.W., Brindley, J.: Intratrophic predation in simple predator–prey models. Bull. Math. Biol. 60, 937–953 (1998)CrossRefzbMATHGoogle Scholar
  24. 24.
    Manosa, V.: Periodic travelling waves in nonlinear reaction–diffusion equations via multiple Hopf bifurcation. Chaos Solitons Fractals 18(2), 241–257 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Liu, Y., Li, J.: On third-order nilpotent critical points: integral factor method. Int. J. Bifur. Chaos 21(05), 1293–1309 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Han, M.: Remarks on the center and focus problem for planar systems. J. Shanghai Norm. Univ. 42, 565–579 (2013)Google Scholar
  27. 27.
    Sansone, G., Conti, R.: Non-linear Differential Equations. Macmillan, New York (1964)zbMATHGoogle Scholar
  28. 28.
    Zhang, Z., Ding, T., Huang, W., Dong, Z.: The Qualitative Theory of Differential Equations. Science Press, Beijing (1997)Google Scholar
  29. 29.
    Amelbkin, V.V., Lukasevnky, N.A., Sadovski, A.P.: Nonlinear Oscillations in Second Order Systems. BGY Lenin. B. I. Press, Minsk (1992). (in Russian)Google Scholar
  30. 30.
    Liu, Y., Li, F.: Double bifurcation of nilpotent foci. Int. J. Bifur. Chaos 25(3), 1550036 (2015)CrossRefzbMATHGoogle Scholar
  31. 31.
    Liu, T., Liu, Y., Li, F.: A kind of bifurcation of limit cycle from a nilpotent critical point. J. Appl. Anal. Comput. 8, 10–18 (2018)MathSciNetGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Linyi UniversityLinyiChina
  2. 2.Guangdong University of Finance and EconomicsGuangzhouChina

Personalised recommendations